Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coeq0i Structured version   Visualization version   GIF version

Theorem coeq0i 41795
Description: coeq0 6255 but without explicitly introducing domain and range symbols. (Contributed by Stefan O'Rear, 16-Oct-2014.)
Assertion
Ref Expression
coeq0i ((𝐴:𝐶𝐷𝐵:𝐸𝐹 ∧ (𝐶𝐹) = ∅) → (𝐴𝐵) = ∅)

Proof of Theorem coeq0i
StepHypRef Expression
1 frn 6725 . . . . . 6 (𝐵:𝐸𝐹 → ran 𝐵𝐹)
213ad2ant2 1132 . . . . 5 ((𝐴:𝐶𝐷𝐵:𝐸𝐹 ∧ (𝐶𝐹) = ∅) → ran 𝐵𝐹)
3 sslin 4235 . . . . 5 (ran 𝐵𝐹 → (dom 𝐴 ∩ ran 𝐵) ⊆ (dom 𝐴𝐹))
42, 3syl 17 . . . 4 ((𝐴:𝐶𝐷𝐵:𝐸𝐹 ∧ (𝐶𝐹) = ∅) → (dom 𝐴 ∩ ran 𝐵) ⊆ (dom 𝐴𝐹))
5 fdm 6727 . . . . . . 7 (𝐴:𝐶𝐷 → dom 𝐴 = 𝐶)
653ad2ant1 1131 . . . . . 6 ((𝐴:𝐶𝐷𝐵:𝐸𝐹 ∧ (𝐶𝐹) = ∅) → dom 𝐴 = 𝐶)
76ineq1d 4212 . . . . 5 ((𝐴:𝐶𝐷𝐵:𝐸𝐹 ∧ (𝐶𝐹) = ∅) → (dom 𝐴𝐹) = (𝐶𝐹))
8 simp3 1136 . . . . 5 ((𝐴:𝐶𝐷𝐵:𝐸𝐹 ∧ (𝐶𝐹) = ∅) → (𝐶𝐹) = ∅)
97, 8eqtrd 2770 . . . 4 ((𝐴:𝐶𝐷𝐵:𝐸𝐹 ∧ (𝐶𝐹) = ∅) → (dom 𝐴𝐹) = ∅)
104, 9sseqtrd 4023 . . 3 ((𝐴:𝐶𝐷𝐵:𝐸𝐹 ∧ (𝐶𝐹) = ∅) → (dom 𝐴 ∩ ran 𝐵) ⊆ ∅)
11 ss0 4399 . . 3 ((dom 𝐴 ∩ ran 𝐵) ⊆ ∅ → (dom 𝐴 ∩ ran 𝐵) = ∅)
1210, 11syl 17 . 2 ((𝐴:𝐶𝐷𝐵:𝐸𝐹 ∧ (𝐶𝐹) = ∅) → (dom 𝐴 ∩ ran 𝐵) = ∅)
1312coemptyd 14932 1 ((𝐴:𝐶𝐷𝐵:𝐸𝐹 ∧ (𝐶𝐹) = ∅) → (𝐴𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  cin 3948  wss 3949  c0 4323  dom cdm 5677  ran crn 5678  ccom 5681  wf 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-fn 6547  df-f 6548
This theorem is referenced by:  diophren  41855
  Copyright terms: Public domain W3C validator