Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coeq0i Structured version   Visualization version   GIF version

Theorem coeq0i 39357
Description: coeq0 6110 but without explicitly introducing domain and range symbols. (Contributed by Stefan O'Rear, 16-Oct-2014.)
Assertion
Ref Expression
coeq0i ((𝐴:𝐶𝐷𝐵:𝐸𝐹 ∧ (𝐶𝐹) = ∅) → (𝐴𝐵) = ∅)

Proof of Theorem coeq0i
StepHypRef Expression
1 frn 6522 . . . . . 6 (𝐵:𝐸𝐹 → ran 𝐵𝐹)
213ad2ant2 1130 . . . . 5 ((𝐴:𝐶𝐷𝐵:𝐸𝐹 ∧ (𝐶𝐹) = ∅) → ran 𝐵𝐹)
3 sslin 4213 . . . . 5 (ran 𝐵𝐹 → (dom 𝐴 ∩ ran 𝐵) ⊆ (dom 𝐴𝐹))
42, 3syl 17 . . . 4 ((𝐴:𝐶𝐷𝐵:𝐸𝐹 ∧ (𝐶𝐹) = ∅) → (dom 𝐴 ∩ ran 𝐵) ⊆ (dom 𝐴𝐹))
5 fdm 6524 . . . . . . 7 (𝐴:𝐶𝐷 → dom 𝐴 = 𝐶)
653ad2ant1 1129 . . . . . 6 ((𝐴:𝐶𝐷𝐵:𝐸𝐹 ∧ (𝐶𝐹) = ∅) → dom 𝐴 = 𝐶)
76ineq1d 4190 . . . . 5 ((𝐴:𝐶𝐷𝐵:𝐸𝐹 ∧ (𝐶𝐹) = ∅) → (dom 𝐴𝐹) = (𝐶𝐹))
8 simp3 1134 . . . . 5 ((𝐴:𝐶𝐷𝐵:𝐸𝐹 ∧ (𝐶𝐹) = ∅) → (𝐶𝐹) = ∅)
97, 8eqtrd 2858 . . . 4 ((𝐴:𝐶𝐷𝐵:𝐸𝐹 ∧ (𝐶𝐹) = ∅) → (dom 𝐴𝐹) = ∅)
104, 9sseqtrd 4009 . . 3 ((𝐴:𝐶𝐷𝐵:𝐸𝐹 ∧ (𝐶𝐹) = ∅) → (dom 𝐴 ∩ ran 𝐵) ⊆ ∅)
11 ss0 4354 . . 3 ((dom 𝐴 ∩ ran 𝐵) ⊆ ∅ → (dom 𝐴 ∩ ran 𝐵) = ∅)
1210, 11syl 17 . 2 ((𝐴:𝐶𝐷𝐵:𝐸𝐹 ∧ (𝐶𝐹) = ∅) → (dom 𝐴 ∩ ran 𝐵) = ∅)
1312coemptyd 14341 1 ((𝐴:𝐶𝐷𝐵:𝐸𝐹 ∧ (𝐶𝐹) = ∅) → (𝐴𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1537  cin 3937  wss 3938  c0 4293  dom cdm 5557  ran crn 5558  ccom 5561  wf 6353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-br 5069  df-opab 5131  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-fn 6360  df-f 6361
This theorem is referenced by:  diophren  39417
  Copyright terms: Public domain W3C validator