Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coeq0i Structured version   Visualization version   GIF version

Theorem coeq0i 42741
Description: coeq0 6228 but without explicitly introducing domain and range symbols. (Contributed by Stefan O'Rear, 16-Oct-2014.)
Assertion
Ref Expression
coeq0i ((𝐴:𝐶𝐷𝐵:𝐸𝐹 ∧ (𝐶𝐹) = ∅) → (𝐴𝐵) = ∅)

Proof of Theorem coeq0i
StepHypRef Expression
1 frn 6695 . . . . . 6 (𝐵:𝐸𝐹 → ran 𝐵𝐹)
213ad2ant2 1134 . . . . 5 ((𝐴:𝐶𝐷𝐵:𝐸𝐹 ∧ (𝐶𝐹) = ∅) → ran 𝐵𝐹)
3 sslin 4206 . . . . 5 (ran 𝐵𝐹 → (dom 𝐴 ∩ ran 𝐵) ⊆ (dom 𝐴𝐹))
42, 3syl 17 . . . 4 ((𝐴:𝐶𝐷𝐵:𝐸𝐹 ∧ (𝐶𝐹) = ∅) → (dom 𝐴 ∩ ran 𝐵) ⊆ (dom 𝐴𝐹))
5 fdm 6697 . . . . . . 7 (𝐴:𝐶𝐷 → dom 𝐴 = 𝐶)
653ad2ant1 1133 . . . . . 6 ((𝐴:𝐶𝐷𝐵:𝐸𝐹 ∧ (𝐶𝐹) = ∅) → dom 𝐴 = 𝐶)
76ineq1d 4182 . . . . 5 ((𝐴:𝐶𝐷𝐵:𝐸𝐹 ∧ (𝐶𝐹) = ∅) → (dom 𝐴𝐹) = (𝐶𝐹))
8 simp3 1138 . . . . 5 ((𝐴:𝐶𝐷𝐵:𝐸𝐹 ∧ (𝐶𝐹) = ∅) → (𝐶𝐹) = ∅)
97, 8eqtrd 2764 . . . 4 ((𝐴:𝐶𝐷𝐵:𝐸𝐹 ∧ (𝐶𝐹) = ∅) → (dom 𝐴𝐹) = ∅)
104, 9sseqtrd 3983 . . 3 ((𝐴:𝐶𝐷𝐵:𝐸𝐹 ∧ (𝐶𝐹) = ∅) → (dom 𝐴 ∩ ran 𝐵) ⊆ ∅)
11 ss0 4365 . . 3 ((dom 𝐴 ∩ ran 𝐵) ⊆ ∅ → (dom 𝐴 ∩ ran 𝐵) = ∅)
1210, 11syl 17 . 2 ((𝐴:𝐶𝐷𝐵:𝐸𝐹 ∧ (𝐶𝐹) = ∅) → (dom 𝐴 ∩ ran 𝐵) = ∅)
1312coemptyd 14945 1 ((𝐴:𝐶𝐷𝐵:𝐸𝐹 ∧ (𝐶𝐹) = ∅) → (𝐴𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  cin 3913  wss 3914  c0 4296  dom cdm 5638  ran crn 5639  ccom 5642  wf 6507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-fn 6514  df-f 6515
This theorem is referenced by:  diophren  42801
  Copyright terms: Public domain W3C validator