| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > coeq0i | Structured version Visualization version GIF version | ||
| Description: coeq0 6228 but without explicitly introducing domain and range symbols. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
| Ref | Expression |
|---|---|
| coeq0i | ⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → (𝐴 ∘ 𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frn 6695 | . . . . . 6 ⊢ (𝐵:𝐸⟶𝐹 → ran 𝐵 ⊆ 𝐹) | |
| 2 | 1 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → ran 𝐵 ⊆ 𝐹) |
| 3 | sslin 4206 | . . . . 5 ⊢ (ran 𝐵 ⊆ 𝐹 → (dom 𝐴 ∩ ran 𝐵) ⊆ (dom 𝐴 ∩ 𝐹)) | |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → (dom 𝐴 ∩ ran 𝐵) ⊆ (dom 𝐴 ∩ 𝐹)) |
| 5 | fdm 6697 | . . . . . . 7 ⊢ (𝐴:𝐶⟶𝐷 → dom 𝐴 = 𝐶) | |
| 6 | 5 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → dom 𝐴 = 𝐶) |
| 7 | 6 | ineq1d 4182 | . . . . 5 ⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → (dom 𝐴 ∩ 𝐹) = (𝐶 ∩ 𝐹)) |
| 8 | simp3 1138 | . . . . 5 ⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → (𝐶 ∩ 𝐹) = ∅) | |
| 9 | 7, 8 | eqtrd 2764 | . . . 4 ⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → (dom 𝐴 ∩ 𝐹) = ∅) |
| 10 | 4, 9 | sseqtrd 3983 | . . 3 ⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → (dom 𝐴 ∩ ran 𝐵) ⊆ ∅) |
| 11 | ss0 4365 | . . 3 ⊢ ((dom 𝐴 ∩ ran 𝐵) ⊆ ∅ → (dom 𝐴 ∩ ran 𝐵) = ∅) | |
| 12 | 10, 11 | syl 17 | . 2 ⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → (dom 𝐴 ∩ ran 𝐵) = ∅) |
| 13 | 12 | coemptyd 14945 | 1 ⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → (𝐴 ∘ 𝐵) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∩ cin 3913 ⊆ wss 3914 ∅c0 4296 dom cdm 5638 ran crn 5639 ∘ ccom 5642 ⟶wf 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-fn 6514 df-f 6515 |
| This theorem is referenced by: diophren 42801 |
| Copyright terms: Public domain | W3C validator |