![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > coeq0i | Structured version Visualization version GIF version |
Description: coeq0 6286 but without explicitly introducing domain and range symbols. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
Ref | Expression |
---|---|
coeq0i | ⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → (𝐴 ∘ 𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frn 6754 | . . . . . 6 ⊢ (𝐵:𝐸⟶𝐹 → ran 𝐵 ⊆ 𝐹) | |
2 | 1 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → ran 𝐵 ⊆ 𝐹) |
3 | sslin 4264 | . . . . 5 ⊢ (ran 𝐵 ⊆ 𝐹 → (dom 𝐴 ∩ ran 𝐵) ⊆ (dom 𝐴 ∩ 𝐹)) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → (dom 𝐴 ∩ ran 𝐵) ⊆ (dom 𝐴 ∩ 𝐹)) |
5 | fdm 6756 | . . . . . . 7 ⊢ (𝐴:𝐶⟶𝐷 → dom 𝐴 = 𝐶) | |
6 | 5 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → dom 𝐴 = 𝐶) |
7 | 6 | ineq1d 4240 | . . . . 5 ⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → (dom 𝐴 ∩ 𝐹) = (𝐶 ∩ 𝐹)) |
8 | simp3 1138 | . . . . 5 ⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → (𝐶 ∩ 𝐹) = ∅) | |
9 | 7, 8 | eqtrd 2780 | . . . 4 ⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → (dom 𝐴 ∩ 𝐹) = ∅) |
10 | 4, 9 | sseqtrd 4049 | . . 3 ⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → (dom 𝐴 ∩ ran 𝐵) ⊆ ∅) |
11 | ss0 4425 | . . 3 ⊢ ((dom 𝐴 ∩ ran 𝐵) ⊆ ∅ → (dom 𝐴 ∩ ran 𝐵) = ∅) | |
12 | 10, 11 | syl 17 | . 2 ⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → (dom 𝐴 ∩ ran 𝐵) = ∅) |
13 | 12 | coemptyd 15028 | 1 ⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → (𝐴 ∘ 𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 dom cdm 5700 ran crn 5701 ∘ ccom 5704 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-fn 6576 df-f 6577 |
This theorem is referenced by: diophren 42769 |
Copyright terms: Public domain | W3C validator |