![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > coeq0i | Structured version Visualization version GIF version |
Description: coeq0 6277 but without explicitly introducing domain and range symbols. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
Ref | Expression |
---|---|
coeq0i | ⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → (𝐴 ∘ 𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frn 6744 | . . . . . 6 ⊢ (𝐵:𝐸⟶𝐹 → ran 𝐵 ⊆ 𝐹) | |
2 | 1 | 3ad2ant2 1133 | . . . . 5 ⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → ran 𝐵 ⊆ 𝐹) |
3 | sslin 4251 | . . . . 5 ⊢ (ran 𝐵 ⊆ 𝐹 → (dom 𝐴 ∩ ran 𝐵) ⊆ (dom 𝐴 ∩ 𝐹)) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → (dom 𝐴 ∩ ran 𝐵) ⊆ (dom 𝐴 ∩ 𝐹)) |
5 | fdm 6746 | . . . . . . 7 ⊢ (𝐴:𝐶⟶𝐷 → dom 𝐴 = 𝐶) | |
6 | 5 | 3ad2ant1 1132 | . . . . . 6 ⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → dom 𝐴 = 𝐶) |
7 | 6 | ineq1d 4227 | . . . . 5 ⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → (dom 𝐴 ∩ 𝐹) = (𝐶 ∩ 𝐹)) |
8 | simp3 1137 | . . . . 5 ⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → (𝐶 ∩ 𝐹) = ∅) | |
9 | 7, 8 | eqtrd 2775 | . . . 4 ⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → (dom 𝐴 ∩ 𝐹) = ∅) |
10 | 4, 9 | sseqtrd 4036 | . . 3 ⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → (dom 𝐴 ∩ ran 𝐵) ⊆ ∅) |
11 | ss0 4408 | . . 3 ⊢ ((dom 𝐴 ∩ ran 𝐵) ⊆ ∅ → (dom 𝐴 ∩ ran 𝐵) = ∅) | |
12 | 10, 11 | syl 17 | . 2 ⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → (dom 𝐴 ∩ ran 𝐵) = ∅) |
13 | 12 | coemptyd 15015 | 1 ⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → (𝐴 ∘ 𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1537 ∩ cin 3962 ⊆ wss 3963 ∅c0 4339 dom cdm 5689 ran crn 5690 ∘ ccom 5693 ⟶wf 6559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-fn 6566 df-f 6567 |
This theorem is referenced by: diophren 42801 |
Copyright terms: Public domain | W3C validator |