| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cosselcnvrefrels2 | Structured version Visualization version GIF version | ||
| Description: Necessary and sufficient condition for a coset relation to be an element of the converse reflexive relation class. (Contributed by Peter Mazsa, 25-Aug-2021.) |
| Ref | Expression |
|---|---|
| cosselcnvrefrels2 | ⊢ ( ≀ 𝑅 ∈ CnvRefRels ↔ ( ≀ 𝑅 ⊆ I ∧ ≀ 𝑅 ∈ Rels )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elcnvrefrels2 38552 | . 2 ⊢ ( ≀ 𝑅 ∈ CnvRefRels ↔ ( ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ∧ ≀ 𝑅 ∈ Rels )) | |
| 2 | cossssid 38485 | . . 3 ⊢ ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅))) | |
| 3 | 2 | anbi1i 624 | . 2 ⊢ (( ≀ 𝑅 ⊆ I ∧ ≀ 𝑅 ∈ Rels ) ↔ ( ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ∧ ≀ 𝑅 ∈ Rels )) |
| 4 | 1, 3 | bitr4i 278 | 1 ⊢ ( ≀ 𝑅 ∈ CnvRefRels ↔ ( ≀ 𝑅 ⊆ I ∧ ≀ 𝑅 ∈ Rels )) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∩ cin 3925 ⊆ wss 3926 I cid 5547 × cxp 5652 dom cdm 5654 ran crn 5655 ≀ ccoss 38199 Rels crels 38201 CnvRefRels ccnvrefrels 38207 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-coss 38429 df-rels 38503 df-ssr 38516 df-cnvrefs 38543 df-cnvrefrels 38544 |
| This theorem is referenced by: cosselcnvrefrels3 38557 cosselcnvrefrels4 38558 cosselcnvrefrels5 38559 dffunsALTV2 38702 elfunsALTV2 38711 dfdisjs2 38727 eldisjs2 38741 |
| Copyright terms: Public domain | W3C validator |