Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cosselcnvrefrels2 Structured version   Visualization version   GIF version

Theorem cosselcnvrefrels2 38522
Description: Necessary and sufficient condition for a coset relation to be an element of the converse reflexive relation class. (Contributed by Peter Mazsa, 25-Aug-2021.)
Assertion
Ref Expression
cosselcnvrefrels2 ( ≀ 𝑅 ∈ CnvRefRels ↔ ( ≀ 𝑅 ⊆ I ∧ ≀ 𝑅 ∈ Rels ))

Proof of Theorem cosselcnvrefrels2
StepHypRef Expression
1 elcnvrefrels2 38518 . 2 ( ≀ 𝑅 ∈ CnvRefRels ↔ ( ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ∧ ≀ 𝑅 ∈ Rels ))
2 cossssid 38451 . . 3 ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)))
32anbi1i 624 . 2 (( ≀ 𝑅 ⊆ I ∧ ≀ 𝑅 ∈ Rels ) ↔ ( ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ∧ ≀ 𝑅 ∈ Rels ))
41, 3bitr4i 278 1 ( ≀ 𝑅 ∈ CnvRefRels ↔ ( ≀ 𝑅 ⊆ I ∧ ≀ 𝑅 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  cin 3910  wss 3911   I cid 5525   × cxp 5629  dom cdm 5631  ran crn 5632  ccoss 38162   Rels crels 38164   CnvRefRels ccnvrefrels 38170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-coss 38395  df-rels 38469  df-ssr 38482  df-cnvrefs 38509  df-cnvrefrels 38510
This theorem is referenced by:  cosselcnvrefrels3  38523  cosselcnvrefrels4  38524  cosselcnvrefrels5  38525  dffunsALTV2  38669  elfunsALTV2  38678  dfdisjs2  38694  eldisjs2  38708
  Copyright terms: Public domain W3C validator