Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cosselcnvrefrels2 Structured version   Visualization version   GIF version

Theorem cosselcnvrefrels2 35768
Description: Necessary and sufficient condition for a coset relation to be an element of the converse reflexive relation class. (Contributed by Peter Mazsa, 25-Aug-2021.)
Assertion
Ref Expression
cosselcnvrefrels2 ( ≀ 𝑅 ∈ CnvRefRels ↔ ( ≀ 𝑅 ⊆ I ∧ ≀ 𝑅 ∈ Rels ))

Proof of Theorem cosselcnvrefrels2
StepHypRef Expression
1 elcnvrefrels2 35764 . 2 ( ≀ 𝑅 ∈ CnvRefRels ↔ ( ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ∧ ≀ 𝑅 ∈ Rels ))
2 cossssid 35701 . . 3 ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)))
32anbi1i 625 . 2 (( ≀ 𝑅 ⊆ I ∧ ≀ 𝑅 ∈ Rels ) ↔ ( ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ∧ ≀ 𝑅 ∈ Rels ))
41, 3bitr4i 280 1 ( ≀ 𝑅 ∈ CnvRefRels ↔ ( ≀ 𝑅 ⊆ I ∧ ≀ 𝑅 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  wcel 2110  cin 3934  wss 3935   I cid 5453   × cxp 5547  dom cdm 5549  ran crn 5550  ccoss 35447   Rels crels 35449   CnvRefRels ccnvrefrels 35455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-coss 35653  df-rels 35719  df-ssr 35732  df-cnvrefs 35757  df-cnvrefrels 35758
This theorem is referenced by:  cosselcnvrefrels3  35769  cosselcnvrefrels4  35770  cosselcnvrefrels5  35771  dffunsALTV2  35911  elfunsALTV2  35920  dfdisjs2  35936  eldisjs2  35950
  Copyright terms: Public domain W3C validator