| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > csbafv12g | Structured version Visualization version GIF version | ||
| Description: Move class substitution in and out of a function value, analogous to csbfv12 6867, with a direct proof proposed by Mario Carneiro, analogous to csbov123 7390. (Contributed by Alexander van der Vekens, 23-Jul-2017.) |
| Ref | Expression |
|---|---|
| csbafv12g | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐹'''𝐵) = (⦋𝐴 / 𝑥⦌𝐹'''⦋𝐴 / 𝑥⦌𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 3853 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌(𝐹'''𝐵) = ⦋𝐴 / 𝑥⦌(𝐹'''𝐵)) | |
| 2 | csbeq1 3853 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌𝐹) | |
| 3 | csbeq1 3853 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
| 4 | 2, 3 | afveq12d 47170 | . . 3 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐹'''⦋𝑦 / 𝑥⦌𝐵) = (⦋𝐴 / 𝑥⦌𝐹'''⦋𝐴 / 𝑥⦌𝐵)) |
| 5 | 1, 4 | eqeq12d 2747 | . 2 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌(𝐹'''𝐵) = (⦋𝑦 / 𝑥⦌𝐹'''⦋𝑦 / 𝑥⦌𝐵) ↔ ⦋𝐴 / 𝑥⦌(𝐹'''𝐵) = (⦋𝐴 / 𝑥⦌𝐹'''⦋𝐴 / 𝑥⦌𝐵))) |
| 6 | vex 3440 | . . 3 ⊢ 𝑦 ∈ V | |
| 7 | nfcsb1v 3874 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐹 | |
| 8 | nfcsb1v 3874 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
| 9 | 7, 8 | nfafv 47173 | . . 3 ⊢ Ⅎ𝑥(⦋𝑦 / 𝑥⦌𝐹'''⦋𝑦 / 𝑥⦌𝐵) |
| 10 | csbeq1a 3864 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐹 = ⦋𝑦 / 𝑥⦌𝐹) | |
| 11 | csbeq1a 3864 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
| 12 | 10, 11 | afveq12d 47170 | . . 3 ⊢ (𝑥 = 𝑦 → (𝐹'''𝐵) = (⦋𝑦 / 𝑥⦌𝐹'''⦋𝑦 / 𝑥⦌𝐵)) |
| 13 | 6, 9, 12 | csbief 3884 | . 2 ⊢ ⦋𝑦 / 𝑥⦌(𝐹'''𝐵) = (⦋𝑦 / 𝑥⦌𝐹'''⦋𝑦 / 𝑥⦌𝐵) |
| 14 | 5, 13 | vtoclg 3509 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐹'''𝐵) = (⦋𝐴 / 𝑥⦌𝐹'''⦋𝐴 / 𝑥⦌𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ⦋csb 3850 '''cafv 47154 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-res 5628 df-iota 6437 df-fun 6483 df-fv 6489 df-aiota 47122 df-dfat 47156 df-afv 47157 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |