| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > csbafv12g | Structured version Visualization version GIF version | ||
| Description: Move class substitution in and out of a function value, analogous to csbfv12 6923, with a direct proof proposed by Mario Carneiro, analogous to csbov123 7447. (Contributed by Alexander van der Vekens, 23-Jul-2017.) |
| Ref | Expression |
|---|---|
| csbafv12g | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐹'''𝐵) = (⦋𝐴 / 𝑥⦌𝐹'''⦋𝐴 / 𝑥⦌𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 3877 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌(𝐹'''𝐵) = ⦋𝐴 / 𝑥⦌(𝐹'''𝐵)) | |
| 2 | csbeq1 3877 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌𝐹) | |
| 3 | csbeq1 3877 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
| 4 | 2, 3 | afveq12d 47110 | . . 3 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐹'''⦋𝑦 / 𝑥⦌𝐵) = (⦋𝐴 / 𝑥⦌𝐹'''⦋𝐴 / 𝑥⦌𝐵)) |
| 5 | 1, 4 | eqeq12d 2751 | . 2 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌(𝐹'''𝐵) = (⦋𝑦 / 𝑥⦌𝐹'''⦋𝑦 / 𝑥⦌𝐵) ↔ ⦋𝐴 / 𝑥⦌(𝐹'''𝐵) = (⦋𝐴 / 𝑥⦌𝐹'''⦋𝐴 / 𝑥⦌𝐵))) |
| 6 | vex 3463 | . . 3 ⊢ 𝑦 ∈ V | |
| 7 | nfcsb1v 3898 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐹 | |
| 8 | nfcsb1v 3898 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
| 9 | 7, 8 | nfafv 47113 | . . 3 ⊢ Ⅎ𝑥(⦋𝑦 / 𝑥⦌𝐹'''⦋𝑦 / 𝑥⦌𝐵) |
| 10 | csbeq1a 3888 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐹 = ⦋𝑦 / 𝑥⦌𝐹) | |
| 11 | csbeq1a 3888 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
| 12 | 10, 11 | afveq12d 47110 | . . 3 ⊢ (𝑥 = 𝑦 → (𝐹'''𝐵) = (⦋𝑦 / 𝑥⦌𝐹'''⦋𝑦 / 𝑥⦌𝐵)) |
| 13 | 6, 9, 12 | csbief 3908 | . 2 ⊢ ⦋𝑦 / 𝑥⦌(𝐹'''𝐵) = (⦋𝑦 / 𝑥⦌𝐹'''⦋𝑦 / 𝑥⦌𝐵) |
| 14 | 5, 13 | vtoclg 3533 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐹'''𝐵) = (⦋𝐴 / 𝑥⦌𝐹'''⦋𝐴 / 𝑥⦌𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ⦋csb 3874 '''cafv 47094 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-res 5666 df-iota 6483 df-fun 6532 df-fv 6538 df-aiota 47062 df-dfat 47096 df-afv 47097 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |