Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbafv12g Structured version   Visualization version   GIF version

Theorem csbafv12g 44316
Description: Move class substitution in and out of a function value, analogous to csbfv12 6769, with a direct proof proposed by Mario Carneiro, analogous to csbov123 7264. (Contributed by Alexander van der Vekens, 23-Jul-2017.)
Assertion
Ref Expression
csbafv12g (𝐴𝑉𝐴 / 𝑥(𝐹'''𝐵) = (𝐴 / 𝑥𝐹'''𝐴 / 𝑥𝐵))

Proof of Theorem csbafv12g
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3823 . . 3 (𝑦 = 𝐴𝑦 / 𝑥(𝐹'''𝐵) = 𝐴 / 𝑥(𝐹'''𝐵))
2 csbeq1 3823 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐹 = 𝐴 / 𝑥𝐹)
3 csbeq1 3823 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
42, 3afveq12d 44312 . . 3 (𝑦 = 𝐴 → (𝑦 / 𝑥𝐹'''𝑦 / 𝑥𝐵) = (𝐴 / 𝑥𝐹'''𝐴 / 𝑥𝐵))
51, 4eqeq12d 2754 . 2 (𝑦 = 𝐴 → (𝑦 / 𝑥(𝐹'''𝐵) = (𝑦 / 𝑥𝐹'''𝑦 / 𝑥𝐵) ↔ 𝐴 / 𝑥(𝐹'''𝐵) = (𝐴 / 𝑥𝐹'''𝐴 / 𝑥𝐵)))
6 vex 3419 . . 3 𝑦 ∈ V
7 nfcsb1v 3845 . . . 4 𝑥𝑦 / 𝑥𝐹
8 nfcsb1v 3845 . . . 4 𝑥𝑦 / 𝑥𝐵
97, 8nfafv 44315 . . 3 𝑥(𝑦 / 𝑥𝐹'''𝑦 / 𝑥𝐵)
10 csbeq1a 3834 . . . 4 (𝑥 = 𝑦𝐹 = 𝑦 / 𝑥𝐹)
11 csbeq1a 3834 . . . 4 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
1210, 11afveq12d 44312 . . 3 (𝑥 = 𝑦 → (𝐹'''𝐵) = (𝑦 / 𝑥𝐹'''𝑦 / 𝑥𝐵))
136, 9, 12csbief 3855 . 2 𝑦 / 𝑥(𝐹'''𝐵) = (𝑦 / 𝑥𝐹'''𝑦 / 𝑥𝐵)
145, 13vtoclg 3488 1 (𝐴𝑉𝐴 / 𝑥(𝐹'''𝐵) = (𝐴 / 𝑥𝐹'''𝐴 / 𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2111  csb 3820  '''cafv 44296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-sep 5201  ax-nul 5208  ax-pow 5267  ax-pr 5331
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-ral 3067  df-rex 3068  df-rab 3071  df-v 3417  df-sbc 3704  df-csb 3821  df-dif 3878  df-un 3880  df-in 3882  df-ss 3892  df-nul 4247  df-if 4449  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4829  df-int 4869  df-br 5063  df-opab 5125  df-id 5464  df-xp 5566  df-rel 5567  df-cnv 5568  df-co 5569  df-dm 5570  df-res 5572  df-iota 6347  df-fun 6391  df-fv 6397  df-aiota 44264  df-dfat 44298  df-afv 44299
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator