Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > csbafv12g | Structured version Visualization version GIF version |
Description: Move class substitution in and out of a function value, analogous to csbfv12 6769, with a direct proof proposed by Mario Carneiro, analogous to csbov123 7264. (Contributed by Alexander van der Vekens, 23-Jul-2017.) |
Ref | Expression |
---|---|
csbafv12g | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐹'''𝐵) = (⦋𝐴 / 𝑥⦌𝐹'''⦋𝐴 / 𝑥⦌𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3823 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌(𝐹'''𝐵) = ⦋𝐴 / 𝑥⦌(𝐹'''𝐵)) | |
2 | csbeq1 3823 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌𝐹) | |
3 | csbeq1 3823 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
4 | 2, 3 | afveq12d 44312 | . . 3 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐹'''⦋𝑦 / 𝑥⦌𝐵) = (⦋𝐴 / 𝑥⦌𝐹'''⦋𝐴 / 𝑥⦌𝐵)) |
5 | 1, 4 | eqeq12d 2754 | . 2 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌(𝐹'''𝐵) = (⦋𝑦 / 𝑥⦌𝐹'''⦋𝑦 / 𝑥⦌𝐵) ↔ ⦋𝐴 / 𝑥⦌(𝐹'''𝐵) = (⦋𝐴 / 𝑥⦌𝐹'''⦋𝐴 / 𝑥⦌𝐵))) |
6 | vex 3419 | . . 3 ⊢ 𝑦 ∈ V | |
7 | nfcsb1v 3845 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐹 | |
8 | nfcsb1v 3845 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
9 | 7, 8 | nfafv 44315 | . . 3 ⊢ Ⅎ𝑥(⦋𝑦 / 𝑥⦌𝐹'''⦋𝑦 / 𝑥⦌𝐵) |
10 | csbeq1a 3834 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐹 = ⦋𝑦 / 𝑥⦌𝐹) | |
11 | csbeq1a 3834 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
12 | 10, 11 | afveq12d 44312 | . . 3 ⊢ (𝑥 = 𝑦 → (𝐹'''𝐵) = (⦋𝑦 / 𝑥⦌𝐹'''⦋𝑦 / 𝑥⦌𝐵)) |
13 | 6, 9, 12 | csbief 3855 | . 2 ⊢ ⦋𝑦 / 𝑥⦌(𝐹'''𝐵) = (⦋𝑦 / 𝑥⦌𝐹'''⦋𝑦 / 𝑥⦌𝐵) |
14 | 5, 13 | vtoclg 3488 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐹'''𝐵) = (⦋𝐴 / 𝑥⦌𝐹'''⦋𝐴 / 𝑥⦌𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2111 ⦋csb 3820 '''cafv 44296 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-sep 5201 ax-nul 5208 ax-pow 5267 ax-pr 5331 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-ral 3067 df-rex 3068 df-rab 3071 df-v 3417 df-sbc 3704 df-csb 3821 df-dif 3878 df-un 3880 df-in 3882 df-ss 3892 df-nul 4247 df-if 4449 df-sn 4551 df-pr 4553 df-op 4557 df-uni 4829 df-int 4869 df-br 5063 df-opab 5125 df-id 5464 df-xp 5566 df-rel 5567 df-cnv 5568 df-co 5569 df-dm 5570 df-res 5572 df-iota 6347 df-fun 6391 df-fv 6397 df-aiota 44264 df-dfat 44298 df-afv 44299 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |