Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbafv12g Structured version   Visualization version   GIF version

Theorem csbafv12g 45924
Description: Move class substitution in and out of a function value, analogous to csbfv12 6939, with a direct proof proposed by Mario Carneiro, analogous to csbov123 7453. (Contributed by Alexander van der Vekens, 23-Jul-2017.)
Assertion
Ref Expression
csbafv12g (𝐴𝑉𝐴 / 𝑥(𝐹'''𝐵) = (𝐴 / 𝑥𝐹'''𝐴 / 𝑥𝐵))

Proof of Theorem csbafv12g
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3896 . . 3 (𝑦 = 𝐴𝑦 / 𝑥(𝐹'''𝐵) = 𝐴 / 𝑥(𝐹'''𝐵))
2 csbeq1 3896 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐹 = 𝐴 / 𝑥𝐹)
3 csbeq1 3896 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
42, 3afveq12d 45920 . . 3 (𝑦 = 𝐴 → (𝑦 / 𝑥𝐹'''𝑦 / 𝑥𝐵) = (𝐴 / 𝑥𝐹'''𝐴 / 𝑥𝐵))
51, 4eqeq12d 2748 . 2 (𝑦 = 𝐴 → (𝑦 / 𝑥(𝐹'''𝐵) = (𝑦 / 𝑥𝐹'''𝑦 / 𝑥𝐵) ↔ 𝐴 / 𝑥(𝐹'''𝐵) = (𝐴 / 𝑥𝐹'''𝐴 / 𝑥𝐵)))
6 vex 3478 . . 3 𝑦 ∈ V
7 nfcsb1v 3918 . . . 4 𝑥𝑦 / 𝑥𝐹
8 nfcsb1v 3918 . . . 4 𝑥𝑦 / 𝑥𝐵
97, 8nfafv 45923 . . 3 𝑥(𝑦 / 𝑥𝐹'''𝑦 / 𝑥𝐵)
10 csbeq1a 3907 . . . 4 (𝑥 = 𝑦𝐹 = 𝑦 / 𝑥𝐹)
11 csbeq1a 3907 . . . 4 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
1210, 11afveq12d 45920 . . 3 (𝑥 = 𝑦 → (𝐹'''𝐵) = (𝑦 / 𝑥𝐹'''𝑦 / 𝑥𝐵))
136, 9, 12csbief 3928 . 2 𝑦 / 𝑥(𝐹'''𝐵) = (𝑦 / 𝑥𝐹'''𝑦 / 𝑥𝐵)
145, 13vtoclg 3556 1 (𝐴𝑉𝐴 / 𝑥(𝐹'''𝐵) = (𝐴 / 𝑥𝐹'''𝐴 / 𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  csb 3893  '''cafv 45904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-res 5688  df-iota 6495  df-fun 6545  df-fv 6551  df-aiota 45872  df-dfat 45906  df-afv 45907
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator