Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbafv12g Structured version   Visualization version   GIF version

Theorem csbafv12g 47125
Description: Move class substitution in and out of a function value, analogous to csbfv12 6872, with a direct proof proposed by Mario Carneiro, analogous to csbov123 7397. (Contributed by Alexander van der Vekens, 23-Jul-2017.)
Assertion
Ref Expression
csbafv12g (𝐴𝑉𝐴 / 𝑥(𝐹'''𝐵) = (𝐴 / 𝑥𝐹'''𝐴 / 𝑥𝐵))

Proof of Theorem csbafv12g
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3856 . . 3 (𝑦 = 𝐴𝑦 / 𝑥(𝐹'''𝐵) = 𝐴 / 𝑥(𝐹'''𝐵))
2 csbeq1 3856 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐹 = 𝐴 / 𝑥𝐹)
3 csbeq1 3856 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
42, 3afveq12d 47121 . . 3 (𝑦 = 𝐴 → (𝑦 / 𝑥𝐹'''𝑦 / 𝑥𝐵) = (𝐴 / 𝑥𝐹'''𝐴 / 𝑥𝐵))
51, 4eqeq12d 2745 . 2 (𝑦 = 𝐴 → (𝑦 / 𝑥(𝐹'''𝐵) = (𝑦 / 𝑥𝐹'''𝑦 / 𝑥𝐵) ↔ 𝐴 / 𝑥(𝐹'''𝐵) = (𝐴 / 𝑥𝐹'''𝐴 / 𝑥𝐵)))
6 vex 3442 . . 3 𝑦 ∈ V
7 nfcsb1v 3877 . . . 4 𝑥𝑦 / 𝑥𝐹
8 nfcsb1v 3877 . . . 4 𝑥𝑦 / 𝑥𝐵
97, 8nfafv 47124 . . 3 𝑥(𝑦 / 𝑥𝐹'''𝑦 / 𝑥𝐵)
10 csbeq1a 3867 . . . 4 (𝑥 = 𝑦𝐹 = 𝑦 / 𝑥𝐹)
11 csbeq1a 3867 . . . 4 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
1210, 11afveq12d 47121 . . 3 (𝑥 = 𝑦 → (𝐹'''𝐵) = (𝑦 / 𝑥𝐹'''𝑦 / 𝑥𝐵))
136, 9, 12csbief 3887 . 2 𝑦 / 𝑥(𝐹'''𝐵) = (𝑦 / 𝑥𝐹'''𝑦 / 𝑥𝐵)
145, 13vtoclg 3511 1 (𝐴𝑉𝐴 / 𝑥(𝐹'''𝐵) = (𝐴 / 𝑥𝐹'''𝐴 / 𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  csb 3853  '''cafv 47105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-res 5635  df-iota 6442  df-fun 6488  df-fv 6494  df-aiota 47073  df-dfat 47107  df-afv 47108
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator