Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbafv12g Structured version   Visualization version   GIF version

Theorem csbafv12g 47174
Description: Move class substitution in and out of a function value, analogous to csbfv12 6867, with a direct proof proposed by Mario Carneiro, analogous to csbov123 7390. (Contributed by Alexander van der Vekens, 23-Jul-2017.)
Assertion
Ref Expression
csbafv12g (𝐴𝑉𝐴 / 𝑥(𝐹'''𝐵) = (𝐴 / 𝑥𝐹'''𝐴 / 𝑥𝐵))

Proof of Theorem csbafv12g
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3853 . . 3 (𝑦 = 𝐴𝑦 / 𝑥(𝐹'''𝐵) = 𝐴 / 𝑥(𝐹'''𝐵))
2 csbeq1 3853 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐹 = 𝐴 / 𝑥𝐹)
3 csbeq1 3853 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
42, 3afveq12d 47170 . . 3 (𝑦 = 𝐴 → (𝑦 / 𝑥𝐹'''𝑦 / 𝑥𝐵) = (𝐴 / 𝑥𝐹'''𝐴 / 𝑥𝐵))
51, 4eqeq12d 2747 . 2 (𝑦 = 𝐴 → (𝑦 / 𝑥(𝐹'''𝐵) = (𝑦 / 𝑥𝐹'''𝑦 / 𝑥𝐵) ↔ 𝐴 / 𝑥(𝐹'''𝐵) = (𝐴 / 𝑥𝐹'''𝐴 / 𝑥𝐵)))
6 vex 3440 . . 3 𝑦 ∈ V
7 nfcsb1v 3874 . . . 4 𝑥𝑦 / 𝑥𝐹
8 nfcsb1v 3874 . . . 4 𝑥𝑦 / 𝑥𝐵
97, 8nfafv 47173 . . 3 𝑥(𝑦 / 𝑥𝐹'''𝑦 / 𝑥𝐵)
10 csbeq1a 3864 . . . 4 (𝑥 = 𝑦𝐹 = 𝑦 / 𝑥𝐹)
11 csbeq1a 3864 . . . 4 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
1210, 11afveq12d 47170 . . 3 (𝑥 = 𝑦 → (𝐹'''𝐵) = (𝑦 / 𝑥𝐹'''𝑦 / 𝑥𝐵))
136, 9, 12csbief 3884 . 2 𝑦 / 𝑥(𝐹'''𝐵) = (𝑦 / 𝑥𝐹'''𝑦 / 𝑥𝐵)
145, 13vtoclg 3509 1 (𝐴𝑉𝐴 / 𝑥(𝐹'''𝐵) = (𝐴 / 𝑥𝐹'''𝐴 / 𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  csb 3850  '''cafv 47154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-res 5628  df-iota 6437  df-fun 6483  df-fv 6489  df-aiota 47122  df-dfat 47156  df-afv 47157
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator