Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbafv12g Structured version   Visualization version   GIF version

Theorem csbafv12g 46655
Description: Move class substitution in and out of a function value, analogous to csbfv12 6944, with a direct proof proposed by Mario Carneiro, analogous to csbov123 7462. (Contributed by Alexander van der Vekens, 23-Jul-2017.)
Assertion
Ref Expression
csbafv12g (𝐴𝑉𝐴 / 𝑥(𝐹'''𝐵) = (𝐴 / 𝑥𝐹'''𝐴 / 𝑥𝐵))

Proof of Theorem csbafv12g
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3892 . . 3 (𝑦 = 𝐴𝑦 / 𝑥(𝐹'''𝐵) = 𝐴 / 𝑥(𝐹'''𝐵))
2 csbeq1 3892 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐹 = 𝐴 / 𝑥𝐹)
3 csbeq1 3892 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
42, 3afveq12d 46651 . . 3 (𝑦 = 𝐴 → (𝑦 / 𝑥𝐹'''𝑦 / 𝑥𝐵) = (𝐴 / 𝑥𝐹'''𝐴 / 𝑥𝐵))
51, 4eqeq12d 2741 . 2 (𝑦 = 𝐴 → (𝑦 / 𝑥(𝐹'''𝐵) = (𝑦 / 𝑥𝐹'''𝑦 / 𝑥𝐵) ↔ 𝐴 / 𝑥(𝐹'''𝐵) = (𝐴 / 𝑥𝐹'''𝐴 / 𝑥𝐵)))
6 vex 3465 . . 3 𝑦 ∈ V
7 nfcsb1v 3914 . . . 4 𝑥𝑦 / 𝑥𝐹
8 nfcsb1v 3914 . . . 4 𝑥𝑦 / 𝑥𝐵
97, 8nfafv 46654 . . 3 𝑥(𝑦 / 𝑥𝐹'''𝑦 / 𝑥𝐵)
10 csbeq1a 3903 . . . 4 (𝑥 = 𝑦𝐹 = 𝑦 / 𝑥𝐹)
11 csbeq1a 3903 . . . 4 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
1210, 11afveq12d 46651 . . 3 (𝑥 = 𝑦 → (𝐹'''𝐵) = (𝑦 / 𝑥𝐹'''𝑦 / 𝑥𝐵))
136, 9, 12csbief 3924 . 2 𝑦 / 𝑥(𝐹'''𝐵) = (𝑦 / 𝑥𝐹'''𝑦 / 𝑥𝐵)
145, 13vtoclg 3532 1 (𝐴𝑉𝐴 / 𝑥(𝐹'''𝐵) = (𝐴 / 𝑥𝐹'''𝐴 / 𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  csb 3889  '''cafv 46635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-br 5150  df-opab 5212  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-res 5690  df-iota 6501  df-fun 6551  df-fv 6557  df-aiota 46603  df-dfat 46637  df-afv 46638
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator