![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > csbaovg | Structured version Visualization version GIF version |
Description: Move class substitution in and out of an operation. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
csbaovg | ⊢ (𝐴 ∈ 𝐷 → ⦋𝐴 / 𝑥⦌ ((𝐵𝐹𝐶)) = ((⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶)) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3897 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌ ((𝐵𝐹𝐶)) = ⦋𝐴 / 𝑥⦌ ((𝐵𝐹𝐶)) ) | |
2 | csbeq1 3897 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌𝐹) | |
3 | csbeq1 3897 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
4 | csbeq1 3897 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑥⦌𝐶) | |
5 | 2, 3, 4 | aoveq123d 46587 | . . 3 ⊢ (𝑦 = 𝐴 → ((⦋𝑦 / 𝑥⦌𝐵⦋𝑦 / 𝑥⦌𝐹⦋𝑦 / 𝑥⦌𝐶)) = ((⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶)) ) |
6 | 1, 5 | eqeq12d 2744 | . 2 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌ ((𝐵𝐹𝐶)) = ((⦋𝑦 / 𝑥⦌𝐵⦋𝑦 / 𝑥⦌𝐹⦋𝑦 / 𝑥⦌𝐶)) ↔ ⦋𝐴 / 𝑥⦌ ((𝐵𝐹𝐶)) = ((⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶)) )) |
7 | vex 3477 | . . 3 ⊢ 𝑦 ∈ V | |
8 | nfcsb1v 3919 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
9 | nfcsb1v 3919 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐹 | |
10 | nfcsb1v 3919 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 | |
11 | 8, 9, 10 | nfaov 46588 | . . 3 ⊢ Ⅎ𝑥 ((⦋𝑦 / 𝑥⦌𝐵⦋𝑦 / 𝑥⦌𝐹⦋𝑦 / 𝑥⦌𝐶)) |
12 | csbeq1a 3908 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐹 = ⦋𝑦 / 𝑥⦌𝐹) | |
13 | csbeq1a 3908 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
14 | csbeq1a 3908 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) | |
15 | 12, 13, 14 | aoveq123d 46587 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝐵𝐹𝐶)) = ((⦋𝑦 / 𝑥⦌𝐵⦋𝑦 / 𝑥⦌𝐹⦋𝑦 / 𝑥⦌𝐶)) ) |
16 | 7, 11, 15 | csbief 3929 | . 2 ⊢ ⦋𝑦 / 𝑥⦌ ((𝐵𝐹𝐶)) = ((⦋𝑦 / 𝑥⦌𝐵⦋𝑦 / 𝑥⦌𝐹⦋𝑦 / 𝑥⦌𝐶)) |
17 | 6, 16 | vtoclg 3542 | 1 ⊢ (𝐴 ∈ 𝐷 → ⦋𝐴 / 𝑥⦌ ((𝐵𝐹𝐶)) = ((⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶)) ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ⦋csb 3894 ((caov 46527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-br 5153 df-opab 5215 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-res 5694 df-iota 6505 df-fun 6555 df-fv 6561 df-aiota 46494 df-dfat 46528 df-afv 46529 df-aov 46530 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |