Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbaovg Structured version   Visualization version   GIF version

Theorem csbaovg 46442
Description: Move class substitution in and out of an operation. (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
csbaovg (𝐴𝐷𝐴 / 𝑥 ((𝐵𝐹𝐶)) = ((𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶)) )

Proof of Theorem csbaovg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3891 . . 3 (𝑦 = 𝐴𝑦 / 𝑥 ((𝐵𝐹𝐶)) = 𝐴 / 𝑥 ((𝐵𝐹𝐶)) )
2 csbeq1 3891 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐹 = 𝐴 / 𝑥𝐹)
3 csbeq1 3891 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
4 csbeq1 3891 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐶 = 𝐴 / 𝑥𝐶)
52, 3, 4aoveq123d 46440 . . 3 (𝑦 = 𝐴 → ((𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶)) = ((𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶)) )
61, 5eqeq12d 2742 . 2 (𝑦 = 𝐴 → (𝑦 / 𝑥 ((𝐵𝐹𝐶)) = ((𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶)) ↔ 𝐴 / 𝑥 ((𝐵𝐹𝐶)) = ((𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶)) ))
7 vex 3472 . . 3 𝑦 ∈ V
8 nfcsb1v 3913 . . . 4 𝑥𝑦 / 𝑥𝐵
9 nfcsb1v 3913 . . . 4 𝑥𝑦 / 𝑥𝐹
10 nfcsb1v 3913 . . . 4 𝑥𝑦 / 𝑥𝐶
118, 9, 10nfaov 46441 . . 3 𝑥 ((𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶))
12 csbeq1a 3902 . . . 4 (𝑥 = 𝑦𝐹 = 𝑦 / 𝑥𝐹)
13 csbeq1a 3902 . . . 4 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
14 csbeq1a 3902 . . . 4 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
1512, 13, 14aoveq123d 46440 . . 3 (𝑥 = 𝑦 → ((𝐵𝐹𝐶)) = ((𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶)) )
167, 11, 15csbief 3923 . 2 𝑦 / 𝑥 ((𝐵𝐹𝐶)) = ((𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶))
176, 16vtoclg 3537 1 (𝐴𝐷𝐴 / 𝑥 ((𝐵𝐹𝐶)) = ((𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶)) )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  csb 3888   ((caov 46380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-br 5142  df-opab 5204  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-res 5681  df-iota 6488  df-fun 6538  df-fv 6544  df-aiota 46347  df-dfat 46381  df-afv 46382  df-aov 46383
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator