Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbaovg Structured version   Visualization version   GIF version

Theorem csbaovg 47190
Description: Move class substitution in and out of an operation. (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
csbaovg (𝐴𝐷𝐴 / 𝑥 ((𝐵𝐹𝐶)) = ((𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶)) )

Proof of Theorem csbaovg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3851 . . 3 (𝑦 = 𝐴𝑦 / 𝑥 ((𝐵𝐹𝐶)) = 𝐴 / 𝑥 ((𝐵𝐹𝐶)) )
2 csbeq1 3851 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐹 = 𝐴 / 𝑥𝐹)
3 csbeq1 3851 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
4 csbeq1 3851 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐶 = 𝐴 / 𝑥𝐶)
52, 3, 4aoveq123d 47188 . . 3 (𝑦 = 𝐴 → ((𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶)) = ((𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶)) )
61, 5eqeq12d 2746 . 2 (𝑦 = 𝐴 → (𝑦 / 𝑥 ((𝐵𝐹𝐶)) = ((𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶)) ↔ 𝐴 / 𝑥 ((𝐵𝐹𝐶)) = ((𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶)) ))
7 vex 3438 . . 3 𝑦 ∈ V
8 nfcsb1v 3872 . . . 4 𝑥𝑦 / 𝑥𝐵
9 nfcsb1v 3872 . . . 4 𝑥𝑦 / 𝑥𝐹
10 nfcsb1v 3872 . . . 4 𝑥𝑦 / 𝑥𝐶
118, 9, 10nfaov 47189 . . 3 𝑥 ((𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶))
12 csbeq1a 3862 . . . 4 (𝑥 = 𝑦𝐹 = 𝑦 / 𝑥𝐹)
13 csbeq1a 3862 . . . 4 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
14 csbeq1a 3862 . . . 4 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
1512, 13, 14aoveq123d 47188 . . 3 (𝑥 = 𝑦 → ((𝐵𝐹𝐶)) = ((𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶)) )
167, 11, 15csbief 3882 . 2 𝑦 / 𝑥 ((𝐵𝐹𝐶)) = ((𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶))
176, 16vtoclg 3507 1 (𝐴𝐷𝐴 / 𝑥 ((𝐵𝐹𝐶)) = ((𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶)) )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2110  csb 3848   ((caov 47128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-res 5626  df-iota 6433  df-fun 6479  df-fv 6485  df-aiota 47095  df-dfat 47129  df-afv 47130  df-aov 47131
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator