![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > csbaovg | Structured version Visualization version GIF version |
Description: Move class substitution in and out of an operation. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
csbaovg | ⊢ (𝐴 ∈ 𝐷 → ⦋𝐴 / 𝑥⦌ ((𝐵𝐹𝐶)) = ((⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶)) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3924 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌ ((𝐵𝐹𝐶)) = ⦋𝐴 / 𝑥⦌ ((𝐵𝐹𝐶)) ) | |
2 | csbeq1 3924 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌𝐹) | |
3 | csbeq1 3924 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
4 | csbeq1 3924 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑥⦌𝐶) | |
5 | 2, 3, 4 | aoveq123d 47093 | . . 3 ⊢ (𝑦 = 𝐴 → ((⦋𝑦 / 𝑥⦌𝐵⦋𝑦 / 𝑥⦌𝐹⦋𝑦 / 𝑥⦌𝐶)) = ((⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶)) ) |
6 | 1, 5 | eqeq12d 2756 | . 2 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌ ((𝐵𝐹𝐶)) = ((⦋𝑦 / 𝑥⦌𝐵⦋𝑦 / 𝑥⦌𝐹⦋𝑦 / 𝑥⦌𝐶)) ↔ ⦋𝐴 / 𝑥⦌ ((𝐵𝐹𝐶)) = ((⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶)) )) |
7 | vex 3492 | . . 3 ⊢ 𝑦 ∈ V | |
8 | nfcsb1v 3946 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
9 | nfcsb1v 3946 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐹 | |
10 | nfcsb1v 3946 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 | |
11 | 8, 9, 10 | nfaov 47094 | . . 3 ⊢ Ⅎ𝑥 ((⦋𝑦 / 𝑥⦌𝐵⦋𝑦 / 𝑥⦌𝐹⦋𝑦 / 𝑥⦌𝐶)) |
12 | csbeq1a 3935 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐹 = ⦋𝑦 / 𝑥⦌𝐹) | |
13 | csbeq1a 3935 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
14 | csbeq1a 3935 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) | |
15 | 12, 13, 14 | aoveq123d 47093 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝐵𝐹𝐶)) = ((⦋𝑦 / 𝑥⦌𝐵⦋𝑦 / 𝑥⦌𝐹⦋𝑦 / 𝑥⦌𝐶)) ) |
16 | 7, 11, 15 | csbief 3956 | . 2 ⊢ ⦋𝑦 / 𝑥⦌ ((𝐵𝐹𝐶)) = ((⦋𝑦 / 𝑥⦌𝐵⦋𝑦 / 𝑥⦌𝐹⦋𝑦 / 𝑥⦌𝐶)) |
17 | 6, 16 | vtoclg 3566 | 1 ⊢ (𝐴 ∈ 𝐷 → ⦋𝐴 / 𝑥⦌ ((𝐵𝐹𝐶)) = ((⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶)) ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ⦋csb 3921 ((caov 47033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-res 5712 df-iota 6525 df-fun 6575 df-fv 6581 df-aiota 47000 df-dfat 47034 df-afv 47035 df-aov 47036 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |