Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbaovg Structured version   Visualization version   GIF version

Theorem csbaovg 45888
Description: Move class substitution in and out of an operation. (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
csbaovg (𝐴𝐷𝐴 / 𝑥 ((𝐵𝐹𝐶)) = ((𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶)) )

Proof of Theorem csbaovg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3897 . . 3 (𝑦 = 𝐴𝑦 / 𝑥 ((𝐵𝐹𝐶)) = 𝐴 / 𝑥 ((𝐵𝐹𝐶)) )
2 csbeq1 3897 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐹 = 𝐴 / 𝑥𝐹)
3 csbeq1 3897 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
4 csbeq1 3897 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐶 = 𝐴 / 𝑥𝐶)
52, 3, 4aoveq123d 45886 . . 3 (𝑦 = 𝐴 → ((𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶)) = ((𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶)) )
61, 5eqeq12d 2749 . 2 (𝑦 = 𝐴 → (𝑦 / 𝑥 ((𝐵𝐹𝐶)) = ((𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶)) ↔ 𝐴 / 𝑥 ((𝐵𝐹𝐶)) = ((𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶)) ))
7 vex 3479 . . 3 𝑦 ∈ V
8 nfcsb1v 3919 . . . 4 𝑥𝑦 / 𝑥𝐵
9 nfcsb1v 3919 . . . 4 𝑥𝑦 / 𝑥𝐹
10 nfcsb1v 3919 . . . 4 𝑥𝑦 / 𝑥𝐶
118, 9, 10nfaov 45887 . . 3 𝑥 ((𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶))
12 csbeq1a 3908 . . . 4 (𝑥 = 𝑦𝐹 = 𝑦 / 𝑥𝐹)
13 csbeq1a 3908 . . . 4 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
14 csbeq1a 3908 . . . 4 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
1512, 13, 14aoveq123d 45886 . . 3 (𝑥 = 𝑦 → ((𝐵𝐹𝐶)) = ((𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶)) )
167, 11, 15csbief 3929 . 2 𝑦 / 𝑥 ((𝐵𝐹𝐶)) = ((𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶))
176, 16vtoclg 3557 1 (𝐴𝐷𝐴 / 𝑥 ((𝐵𝐹𝐶)) = ((𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶)) )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  csb 3894   ((caov 45826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-res 5689  df-iota 6496  df-fun 6546  df-fv 6552  df-aiota 45793  df-dfat 45827  df-afv 45828  df-aov 45829
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator