| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > csbaovg | Structured version Visualization version GIF version | ||
| Description: Move class substitution in and out of an operation. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| Ref | Expression |
|---|---|
| csbaovg | ⊢ (𝐴 ∈ 𝐷 → ⦋𝐴 / 𝑥⦌ ((𝐵𝐹𝐶)) = ((⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶)) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 3902 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌ ((𝐵𝐹𝐶)) = ⦋𝐴 / 𝑥⦌ ((𝐵𝐹𝐶)) ) | |
| 2 | csbeq1 3902 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌𝐹) | |
| 3 | csbeq1 3902 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
| 4 | csbeq1 3902 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑥⦌𝐶) | |
| 5 | 2, 3, 4 | aoveq123d 47190 | . . 3 ⊢ (𝑦 = 𝐴 → ((⦋𝑦 / 𝑥⦌𝐵⦋𝑦 / 𝑥⦌𝐹⦋𝑦 / 𝑥⦌𝐶)) = ((⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶)) ) |
| 6 | 1, 5 | eqeq12d 2753 | . 2 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌ ((𝐵𝐹𝐶)) = ((⦋𝑦 / 𝑥⦌𝐵⦋𝑦 / 𝑥⦌𝐹⦋𝑦 / 𝑥⦌𝐶)) ↔ ⦋𝐴 / 𝑥⦌ ((𝐵𝐹𝐶)) = ((⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶)) )) |
| 7 | vex 3484 | . . 3 ⊢ 𝑦 ∈ V | |
| 8 | nfcsb1v 3923 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
| 9 | nfcsb1v 3923 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐹 | |
| 10 | nfcsb1v 3923 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 | |
| 11 | 8, 9, 10 | nfaov 47191 | . . 3 ⊢ Ⅎ𝑥 ((⦋𝑦 / 𝑥⦌𝐵⦋𝑦 / 𝑥⦌𝐹⦋𝑦 / 𝑥⦌𝐶)) |
| 12 | csbeq1a 3913 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐹 = ⦋𝑦 / 𝑥⦌𝐹) | |
| 13 | csbeq1a 3913 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
| 14 | csbeq1a 3913 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) | |
| 15 | 12, 13, 14 | aoveq123d 47190 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝐵𝐹𝐶)) = ((⦋𝑦 / 𝑥⦌𝐵⦋𝑦 / 𝑥⦌𝐹⦋𝑦 / 𝑥⦌𝐶)) ) |
| 16 | 7, 11, 15 | csbief 3933 | . 2 ⊢ ⦋𝑦 / 𝑥⦌ ((𝐵𝐹𝐶)) = ((⦋𝑦 / 𝑥⦌𝐵⦋𝑦 / 𝑥⦌𝐹⦋𝑦 / 𝑥⦌𝐶)) |
| 17 | 6, 16 | vtoclg 3554 | 1 ⊢ (𝐴 ∈ 𝐷 → ⦋𝐴 / 𝑥⦌ ((𝐵𝐹𝐶)) = ((⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶)) ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ⦋csb 3899 ((caov 47130 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-res 5697 df-iota 6514 df-fun 6563 df-fv 6569 df-aiota 47097 df-dfat 47131 df-afv 47132 df-aov 47133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |