MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcmpt Structured version   Visualization version   GIF version

Theorem pcmpt 16863
Description: Construct a function with given prime count characteristics. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypotheses
Ref Expression
pcmpt.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛𝐴), 1))
pcmpt.2 (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
pcmpt.3 (𝜑𝑁 ∈ ℕ)
pcmpt.4 (𝜑𝑃 ∈ ℙ)
pcmpt.5 (𝑛 = 𝑃𝐴 = 𝐵)
Assertion
Ref Expression
pcmpt (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑃𝑁, 𝐵, 0))
Distinct variable groups:   𝐵,𝑛   𝑃,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑛)   𝐹(𝑛)   𝑁(𝑛)

Proof of Theorem pcmpt
Dummy variables 𝑘 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcmpt.3 . 2 (𝜑𝑁 ∈ ℕ)
2 fveq2 6858 . . . . . 6 (𝑝 = 1 → (seq1( · , 𝐹)‘𝑝) = (seq1( · , 𝐹)‘1))
32oveq2d 7403 . . . . 5 (𝑝 = 1 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = (𝑃 pCnt (seq1( · , 𝐹)‘1)))
4 breq2 5111 . . . . . 6 (𝑝 = 1 → (𝑃𝑝𝑃 ≤ 1))
54ifbid 4512 . . . . 5 (𝑝 = 1 → if(𝑃𝑝, 𝐵, 0) = if(𝑃 ≤ 1, 𝐵, 0))
63, 5eqeq12d 2745 . . . 4 (𝑝 = 1 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = if(𝑃𝑝, 𝐵, 0) ↔ (𝑃 pCnt (seq1( · , 𝐹)‘1)) = if(𝑃 ≤ 1, 𝐵, 0)))
76imbi2d 340 . . 3 (𝑝 = 1 → ((𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = if(𝑃𝑝, 𝐵, 0)) ↔ (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘1)) = if(𝑃 ≤ 1, 𝐵, 0))))
8 fveq2 6858 . . . . . 6 (𝑝 = 𝑘 → (seq1( · , 𝐹)‘𝑝) = (seq1( · , 𝐹)‘𝑘))
98oveq2d 7403 . . . . 5 (𝑝 = 𝑘 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)))
10 breq2 5111 . . . . . 6 (𝑝 = 𝑘 → (𝑃𝑝𝑃𝑘))
1110ifbid 4512 . . . . 5 (𝑝 = 𝑘 → if(𝑃𝑝, 𝐵, 0) = if(𝑃𝑘, 𝐵, 0))
129, 11eqeq12d 2745 . . . 4 (𝑝 = 𝑘 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = if(𝑃𝑝, 𝐵, 0) ↔ (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0)))
1312imbi2d 340 . . 3 (𝑝 = 𝑘 → ((𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = if(𝑃𝑝, 𝐵, 0)) ↔ (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0))))
14 fveq2 6858 . . . . . 6 (𝑝 = (𝑘 + 1) → (seq1( · , 𝐹)‘𝑝) = (seq1( · , 𝐹)‘(𝑘 + 1)))
1514oveq2d 7403 . . . . 5 (𝑝 = (𝑘 + 1) → (𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))))
16 breq2 5111 . . . . . 6 (𝑝 = (𝑘 + 1) → (𝑃𝑝𝑃 ≤ (𝑘 + 1)))
1716ifbid 4512 . . . . 5 (𝑝 = (𝑘 + 1) → if(𝑃𝑝, 𝐵, 0) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0))
1815, 17eqeq12d 2745 . . . 4 (𝑝 = (𝑘 + 1) → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = if(𝑃𝑝, 𝐵, 0) ↔ (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0)))
1918imbi2d 340 . . 3 (𝑝 = (𝑘 + 1) → ((𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = if(𝑃𝑝, 𝐵, 0)) ↔ (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0))))
20 fveq2 6858 . . . . . 6 (𝑝 = 𝑁 → (seq1( · , 𝐹)‘𝑝) = (seq1( · , 𝐹)‘𝑁))
2120oveq2d 7403 . . . . 5 (𝑝 = 𝑁 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = (𝑃 pCnt (seq1( · , 𝐹)‘𝑁)))
22 breq2 5111 . . . . . 6 (𝑝 = 𝑁 → (𝑃𝑝𝑃𝑁))
2322ifbid 4512 . . . . 5 (𝑝 = 𝑁 → if(𝑃𝑝, 𝐵, 0) = if(𝑃𝑁, 𝐵, 0))
2421, 23eqeq12d 2745 . . . 4 (𝑝 = 𝑁 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = if(𝑃𝑝, 𝐵, 0) ↔ (𝑃 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑃𝑁, 𝐵, 0)))
2524imbi2d 340 . . 3 (𝑝 = 𝑁 → ((𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = if(𝑃𝑝, 𝐵, 0)) ↔ (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑃𝑁, 𝐵, 0))))
26 pcmpt.4 . . . 4 (𝜑𝑃 ∈ ℙ)
27 1z 12563 . . . . . . . . 9 1 ∈ ℤ
28 seq1 13979 . . . . . . . . 9 (1 ∈ ℤ → (seq1( · , 𝐹)‘1) = (𝐹‘1))
2927, 28ax-mp 5 . . . . . . . 8 (seq1( · , 𝐹)‘1) = (𝐹‘1)
30 1nn 12197 . . . . . . . . 9 1 ∈ ℕ
31 1nprm 16649 . . . . . . . . . . . 12 ¬ 1 ∈ ℙ
32 eleq1 2816 . . . . . . . . . . . 12 (𝑛 = 1 → (𝑛 ∈ ℙ ↔ 1 ∈ ℙ))
3331, 32mtbiri 327 . . . . . . . . . . 11 (𝑛 = 1 → ¬ 𝑛 ∈ ℙ)
3433iffalsed 4499 . . . . . . . . . 10 (𝑛 = 1 → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) = 1)
35 pcmpt.1 . . . . . . . . . 10 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛𝐴), 1))
36 1ex 11170 . . . . . . . . . 10 1 ∈ V
3734, 35, 36fvmpt 6968 . . . . . . . . 9 (1 ∈ ℕ → (𝐹‘1) = 1)
3830, 37ax-mp 5 . . . . . . . 8 (𝐹‘1) = 1
3929, 38eqtri 2752 . . . . . . 7 (seq1( · , 𝐹)‘1) = 1
4039oveq2i 7398 . . . . . 6 (𝑃 pCnt (seq1( · , 𝐹)‘1)) = (𝑃 pCnt 1)
41 pc1 16826 . . . . . 6 (𝑃 ∈ ℙ → (𝑃 pCnt 1) = 0)
4240, 41eqtrid 2776 . . . . 5 (𝑃 ∈ ℙ → (𝑃 pCnt (seq1( · , 𝐹)‘1)) = 0)
43 prmgt1 16667 . . . . . . 7 (𝑃 ∈ ℙ → 1 < 𝑃)
44 1re 11174 . . . . . . . 8 1 ∈ ℝ
45 prmuz2 16666 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
46 eluzelre 12804 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℝ)
4745, 46syl 17 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
48 ltnle 11253 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝑃 ∈ ℝ) → (1 < 𝑃 ↔ ¬ 𝑃 ≤ 1))
4944, 47, 48sylancr 587 . . . . . . 7 (𝑃 ∈ ℙ → (1 < 𝑃 ↔ ¬ 𝑃 ≤ 1))
5043, 49mpbid 232 . . . . . 6 (𝑃 ∈ ℙ → ¬ 𝑃 ≤ 1)
5150iffalsed 4499 . . . . 5 (𝑃 ∈ ℙ → if(𝑃 ≤ 1, 𝐵, 0) = 0)
5242, 51eqtr4d 2767 . . . 4 (𝑃 ∈ ℙ → (𝑃 pCnt (seq1( · , 𝐹)‘1)) = if(𝑃 ≤ 1, 𝐵, 0))
5326, 52syl 17 . . 3 (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘1)) = if(𝑃 ≤ 1, 𝐵, 0))
5426adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → 𝑃 ∈ ℙ)
55 pcmpt.2 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
5635, 55pcmptcl 16862 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ))
5756simpld 494 . . . . . . . . . . . . . . 15 (𝜑𝐹:ℕ⟶ℕ)
58 peano2nn 12198 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
59 ffvelcdm 7053 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶ℕ ∧ (𝑘 + 1) ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℕ)
6057, 58, 59syl2an 596 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℕ)
6160adantrr 717 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝐹‘(𝑘 + 1)) ∈ ℕ)
6254, 61pccld 16821 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑃 pCnt (𝐹‘(𝑘 + 1))) ∈ ℕ0)
6362nn0cnd 12505 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑃 pCnt (𝐹‘(𝑘 + 1))) ∈ ℂ)
6463addlidd 11375 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (0 + (𝑃 pCnt (𝐹‘(𝑘 + 1)))) = (𝑃 pCnt (𝐹‘(𝑘 + 1))))
6558ad2antrl 728 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑘 + 1) ∈ ℕ)
66 ovex 7420 . . . . . . . . . . . . . . 15 (𝑛𝐴) ∈ V
6766, 36ifex 4539 . . . . . . . . . . . . . 14 if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ V
6867csbex 5266 . . . . . . . . . . . . 13 (𝑘 + 1) / 𝑛if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ V
6935fvmpts 6971 . . . . . . . . . . . . . 14 (((𝑘 + 1) ∈ ℕ ∧ (𝑘 + 1) / 𝑛if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ V) → (𝐹‘(𝑘 + 1)) = (𝑘 + 1) / 𝑛if(𝑛 ∈ ℙ, (𝑛𝐴), 1))
70 ovex 7420 . . . . . . . . . . . . . . 15 (𝑘 + 1) ∈ V
71 nfv 1914 . . . . . . . . . . . . . . . 16 𝑛(𝑘 + 1) ∈ ℙ
72 nfcv 2891 . . . . . . . . . . . . . . . . 17 𝑛(𝑘 + 1)
73 nfcv 2891 . . . . . . . . . . . . . . . . 17 𝑛
74 nfcsb1v 3886 . . . . . . . . . . . . . . . . 17 𝑛(𝑘 + 1) / 𝑛𝐴
7572, 73, 74nfov 7417 . . . . . . . . . . . . . . . 16 𝑛((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴)
76 nfcv 2891 . . . . . . . . . . . . . . . 16 𝑛1
7771, 75, 76nfif 4519 . . . . . . . . . . . . . . 15 𝑛if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1)
78 eleq1 2816 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑘 + 1) → (𝑛 ∈ ℙ ↔ (𝑘 + 1) ∈ ℙ))
79 id 22 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑘 + 1) → 𝑛 = (𝑘 + 1))
80 csbeq1a 3876 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑘 + 1) → 𝐴 = (𝑘 + 1) / 𝑛𝐴)
8179, 80oveq12d 7405 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑘 + 1) → (𝑛𝐴) = ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴))
8278, 81ifbieq1d 4513 . . . . . . . . . . . . . . 15 (𝑛 = (𝑘 + 1) → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) = if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1))
8370, 77, 82csbief 3896 . . . . . . . . . . . . . 14 (𝑘 + 1) / 𝑛if(𝑛 ∈ ℙ, (𝑛𝐴), 1) = if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1)
8469, 83eqtrdi 2780 . . . . . . . . . . . . 13 (((𝑘 + 1) ∈ ℕ ∧ (𝑘 + 1) / 𝑛if(𝑛 ∈ ℙ, (𝑛𝐴), 1) ∈ V) → (𝐹‘(𝑘 + 1)) = if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1))
8565, 68, 84sylancl 586 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝐹‘(𝑘 + 1)) = if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1))
86 simprr 772 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑘 + 1) = 𝑃)
8786, 54eqeltrd 2828 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑘 + 1) ∈ ℙ)
8887iftrued 4496 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1) = ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴))
8986csbeq1d 3866 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑘 + 1) / 𝑛𝐴 = 𝑃 / 𝑛𝐴)
90 nfcvd 2892 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → 𝑛𝐵)
91 pcmpt.5 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑃𝐴 = 𝐵)
9290, 91csbiegf 3895 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 / 𝑛𝐴 = 𝐵)
9354, 92syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → 𝑃 / 𝑛𝐴 = 𝐵)
9489, 93eqtrd 2764 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑘 + 1) / 𝑛𝐴 = 𝐵)
9586, 94oveq12d 7405 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴) = (𝑃𝐵))
9685, 88, 953eqtrd 2768 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝐹‘(𝑘 + 1)) = (𝑃𝐵))
9796oveq2d 7403 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑃 pCnt (𝐹‘(𝑘 + 1))) = (𝑃 pCnt (𝑃𝐵)))
9891eleq1d 2813 . . . . . . . . . . . . . 14 (𝑛 = 𝑃 → (𝐴 ∈ ℕ0𝐵 ∈ ℕ0))
9998rspcv 3584 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → (∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0))
10026, 55, 99sylc 65 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℕ0)
101100adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → 𝐵 ∈ ℕ0)
102 pcidlem 16843 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℕ0) → (𝑃 pCnt (𝑃𝐵)) = 𝐵)
10354, 101, 102syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑃 pCnt (𝑃𝐵)) = 𝐵)
10464, 97, 1033eqtrd 2768 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (0 + (𝑃 pCnt (𝐹‘(𝑘 + 1)))) = 𝐵)
105 oveq1 7394 . . . . . . . . . 10 ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = 0 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))) = (0 + (𝑃 pCnt (𝐹‘(𝑘 + 1)))))
106105eqeq1d 2731 . . . . . . . . 9 ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = 0 → (((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))) = 𝐵 ↔ (0 + (𝑃 pCnt (𝐹‘(𝑘 + 1)))) = 𝐵))
107104, 106syl5ibrcom 247 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = 0 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))) = 𝐵))
108 nnre 12193 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
109108ad2antrl 728 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → 𝑘 ∈ ℝ)
110 ltp1 12022 . . . . . . . . . . . . 13 (𝑘 ∈ ℝ → 𝑘 < (𝑘 + 1))
111 peano2re 11347 . . . . . . . . . . . . . 14 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
112 ltnle 11253 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ) → (𝑘 < (𝑘 + 1) ↔ ¬ (𝑘 + 1) ≤ 𝑘))
113111, 112mpdan 687 . . . . . . . . . . . . 13 (𝑘 ∈ ℝ → (𝑘 < (𝑘 + 1) ↔ ¬ (𝑘 + 1) ≤ 𝑘))
114110, 113mpbid 232 . . . . . . . . . . . 12 (𝑘 ∈ ℝ → ¬ (𝑘 + 1) ≤ 𝑘)
115109, 114syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → ¬ (𝑘 + 1) ≤ 𝑘)
11686breq1d 5117 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → ((𝑘 + 1) ≤ 𝑘𝑃𝑘))
117115, 116mtbid 324 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → ¬ 𝑃𝑘)
118117iffalsed 4499 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → if(𝑃𝑘, 𝐵, 0) = 0)
119118eqeq2d 2740 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0) ↔ (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = 0))
120 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
121 nnuz 12836 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
122120, 121eleqtrdi 2838 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
123 seqp1 13981 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ‘1) → (seq1( · , 𝐹)‘(𝑘 + 1)) = ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))))
124122, 123syl 17 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (seq1( · , 𝐹)‘(𝑘 + 1)) = ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))))
125124oveq2d 7403 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = (𝑃 pCnt ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1)))))
12626adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝑃 ∈ ℙ)
12756simprd 495 . . . . . . . . . . . . . 14 (𝜑 → seq1( · , 𝐹):ℕ⟶ℕ)
128127ffvelcdmda 7056 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (seq1( · , 𝐹)‘𝑘) ∈ ℕ)
129 nnz 12550 . . . . . . . . . . . . . 14 ((seq1( · , 𝐹)‘𝑘) ∈ ℕ → (seq1( · , 𝐹)‘𝑘) ∈ ℤ)
130 nnne0 12220 . . . . . . . . . . . . . 14 ((seq1( · , 𝐹)‘𝑘) ∈ ℕ → (seq1( · , 𝐹)‘𝑘) ≠ 0)
131129, 130jca 511 . . . . . . . . . . . . 13 ((seq1( · , 𝐹)‘𝑘) ∈ ℕ → ((seq1( · , 𝐹)‘𝑘) ∈ ℤ ∧ (seq1( · , 𝐹)‘𝑘) ≠ 0))
132128, 131syl 17 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((seq1( · , 𝐹)‘𝑘) ∈ ℤ ∧ (seq1( · , 𝐹)‘𝑘) ≠ 0))
133 nnz 12550 . . . . . . . . . . . . . 14 ((𝐹‘(𝑘 + 1)) ∈ ℕ → (𝐹‘(𝑘 + 1)) ∈ ℤ)
134 nnne0 12220 . . . . . . . . . . . . . 14 ((𝐹‘(𝑘 + 1)) ∈ ℕ → (𝐹‘(𝑘 + 1)) ≠ 0)
135133, 134jca 511 . . . . . . . . . . . . 13 ((𝐹‘(𝑘 + 1)) ∈ ℕ → ((𝐹‘(𝑘 + 1)) ∈ ℤ ∧ (𝐹‘(𝑘 + 1)) ≠ 0))
13660, 135syl 17 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((𝐹‘(𝑘 + 1)) ∈ ℤ ∧ (𝐹‘(𝑘 + 1)) ≠ 0))
137 pcmul 16822 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ ((seq1( · , 𝐹)‘𝑘) ∈ ℤ ∧ (seq1( · , 𝐹)‘𝑘) ≠ 0) ∧ ((𝐹‘(𝑘 + 1)) ∈ ℤ ∧ (𝐹‘(𝑘 + 1)) ≠ 0)) → (𝑃 pCnt ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1)))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))))
138126, 132, 136, 137syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝑃 pCnt ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1)))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))))
139125, 138eqtrd 2764 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))))
140139adantrr 717 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))))
141 prmnn 16644 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
14226, 141syl 17 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℕ)
143142nnred 12201 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℝ)
144143adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → 𝑃 ∈ ℝ)
145144leidd 11744 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → 𝑃𝑃)
146145, 86breqtrrd 5135 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → 𝑃 ≤ (𝑘 + 1))
147146iftrued 4496 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → if(𝑃 ≤ (𝑘 + 1), 𝐵, 0) = 𝐵)
148140, 147eqeq12d 2745 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → ((𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0) ↔ ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))) = 𝐵))
149107, 119, 1483imtr4d 294 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0)))
150149expr 456 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1) = 𝑃 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0))))
151139adantrr 717 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))))
152 simplrr 777 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝑘 + 1) ≠ 𝑃)
153152necomd 2980 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → 𝑃 ≠ (𝑘 + 1))
15426ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → 𝑃 ∈ ℙ)
155 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝑘 + 1) ∈ ℙ)
15655ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
15774nfel1 2908 . . . . . . . . . . . . . . . . . . 19 𝑛(𝑘 + 1) / 𝑛𝐴 ∈ ℕ0
15880eleq1d 2813 . . . . . . . . . . . . . . . . . . 19 (𝑛 = (𝑘 + 1) → (𝐴 ∈ ℕ0(𝑘 + 1) / 𝑛𝐴 ∈ ℕ0))
159157, 158rspc 3576 . . . . . . . . . . . . . . . . . 18 ((𝑘 + 1) ∈ ℙ → (∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0(𝑘 + 1) / 𝑛𝐴 ∈ ℕ0))
160155, 156, 159sylc 65 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝑘 + 1) / 𝑛𝐴 ∈ ℕ0)
161 prmdvdsexpr 16687 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℙ ∧ (𝑘 + 1) ∈ ℙ ∧ (𝑘 + 1) / 𝑛𝐴 ∈ ℕ0) → (𝑃 ∥ ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴) → 𝑃 = (𝑘 + 1)))
162154, 155, 160, 161syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝑃 ∥ ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴) → 𝑃 = (𝑘 + 1)))
163162necon3ad 2938 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝑃 ≠ (𝑘 + 1) → ¬ 𝑃 ∥ ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴)))
164153, 163mpd 15 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → ¬ 𝑃 ∥ ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴))
16558ad2antrl 728 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑘 + 1) ∈ ℕ)
166165, 68, 84sylancl 586 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝐹‘(𝑘 + 1)) = if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1))
167 iftrue 4494 . . . . . . . . . . . . . . . 16 ((𝑘 + 1) ∈ ℙ → if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1) = ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴))
168166, 167sylan9eq 2784 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝐹‘(𝑘 + 1)) = ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴))
169168breq2d 5119 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝑃 ∥ (𝐹‘(𝑘 + 1)) ↔ 𝑃 ∥ ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴)))
170164, 169mtbird 325 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → ¬ 𝑃 ∥ (𝐹‘(𝑘 + 1)))
17157adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → 𝐹:ℕ⟶ℕ)
172171, 165, 59syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝐹‘(𝑘 + 1)) ∈ ℕ)
173172adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝐹‘(𝑘 + 1)) ∈ ℕ)
174 pceq0 16842 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ (𝐹‘(𝑘 + 1)) ∈ ℕ) → ((𝑃 pCnt (𝐹‘(𝑘 + 1))) = 0 ↔ ¬ 𝑃 ∥ (𝐹‘(𝑘 + 1))))
175154, 173, 174syl2anc 584 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → ((𝑃 pCnt (𝐹‘(𝑘 + 1))) = 0 ↔ ¬ 𝑃 ∥ (𝐹‘(𝑘 + 1))))
176170, 175mpbird 257 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝑃 pCnt (𝐹‘(𝑘 + 1))) = 0)
177 iffalse 4497 . . . . . . . . . . . . . . 15 (¬ (𝑘 + 1) ∈ ℙ → if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1) = 1)
178166, 177sylan9eq 2784 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (𝐹‘(𝑘 + 1)) = 1)
179178oveq2d 7403 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (𝑃 pCnt (𝐹‘(𝑘 + 1))) = (𝑃 pCnt 1))
18026, 41syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 pCnt 1) = 0)
181180ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (𝑃 pCnt 1) = 0)
182179, 181eqtrd 2764 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (𝑃 pCnt (𝐹‘(𝑘 + 1))) = 0)
183176, 182pm2.61dan 812 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃 pCnt (𝐹‘(𝑘 + 1))) = 0)
184183oveq2d 7403 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + 0))
18526adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → 𝑃 ∈ ℙ)
186128adantrr 717 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (seq1( · , 𝐹)‘𝑘) ∈ ℕ)
187185, 186pccld 16821 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) ∈ ℕ0)
188187nn0cnd 12505 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) ∈ ℂ)
189188addridd 11374 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + 0) = (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)))
190151, 184, 1893eqtrd 2768 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)))
191142adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → 𝑃 ∈ ℕ)
192191nnred 12201 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → 𝑃 ∈ ℝ)
193165nnred 12201 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑘 + 1) ∈ ℝ)
194192, 193ltlend 11319 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃 < (𝑘 + 1) ↔ (𝑃 ≤ (𝑘 + 1) ∧ (𝑘 + 1) ≠ 𝑃)))
195 simprl 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → 𝑘 ∈ ℕ)
196 nnleltp1 12589 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (𝑃𝑘𝑃 < (𝑘 + 1)))
197191, 195, 196syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃𝑘𝑃 < (𝑘 + 1)))
198 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑘 + 1) ≠ 𝑃)
199198biantrud 531 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃 ≤ (𝑘 + 1) ↔ (𝑃 ≤ (𝑘 + 1) ∧ (𝑘 + 1) ≠ 𝑃)))
200194, 197, 1993bitr4rd 312 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃 ≤ (𝑘 + 1) ↔ 𝑃𝑘))
201200ifbid 4512 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → if(𝑃 ≤ (𝑘 + 1), 𝐵, 0) = if(𝑃𝑘, 𝐵, 0))
202190, 201eqeq12d 2745 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → ((𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0) ↔ (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0)))
203202biimprd 248 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0)))
204203expr 456 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1) ≠ 𝑃 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0))))
205150, 204pm2.61dne 3011 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0)))
206205expcom 413 . . . 4 (𝑘 ∈ ℕ → (𝜑 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0))))
207206a2d 29 . . 3 (𝑘 ∈ ℕ → ((𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0)) → (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0))))
2087, 13, 19, 25, 53, 207nnind 12204 . 2 (𝑁 ∈ ℕ → (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑃𝑁, 𝐵, 0)))
2091, 208mpcom 38 1 (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑃𝑁, 𝐵, 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3447  csb 3862  ifcif 4488   class class class wbr 5107  cmpt 5188  wf 6507  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cn 12186  2c2 12241  0cn0 12442  cz 12529  cuz 12793  seqcseq 13966  cexp 14026  cdvds 16222  cprime 16641   pCnt cpc 16807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-fz 13469  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-gcd 16465  df-prm 16642  df-pc 16808
This theorem is referenced by:  pcmpt2  16864  pcprod  16866  1arithlem4  16897  chtublem  27122  bposlem3  27197
  Copyright terms: Public domain W3C validator