Step | Hyp | Ref
| Expression |
1 | | pcmpt.3 |
. 2
⊢ (𝜑 → 𝑁 ∈ ℕ) |
2 | | fveq2 6774 |
. . . . . 6
⊢ (𝑝 = 1 → (seq1( · ,
𝐹)‘𝑝) = (seq1( · , 𝐹)‘1)) |
3 | 2 | oveq2d 7291 |
. . . . 5
⊢ (𝑝 = 1 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = (𝑃 pCnt (seq1( · , 𝐹)‘1))) |
4 | | breq2 5078 |
. . . . . 6
⊢ (𝑝 = 1 → (𝑃 ≤ 𝑝 ↔ 𝑃 ≤ 1)) |
5 | 4 | ifbid 4482 |
. . . . 5
⊢ (𝑝 = 1 → if(𝑃 ≤ 𝑝, 𝐵, 0) = if(𝑃 ≤ 1, 𝐵, 0)) |
6 | 3, 5 | eqeq12d 2754 |
. . . 4
⊢ (𝑝 = 1 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = if(𝑃 ≤ 𝑝, 𝐵, 0) ↔ (𝑃 pCnt (seq1( · , 𝐹)‘1)) = if(𝑃 ≤ 1, 𝐵, 0))) |
7 | 6 | imbi2d 341 |
. . 3
⊢ (𝑝 = 1 → ((𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = if(𝑃 ≤ 𝑝, 𝐵, 0)) ↔ (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘1)) = if(𝑃 ≤ 1, 𝐵, 0)))) |
8 | | fveq2 6774 |
. . . . . 6
⊢ (𝑝 = 𝑘 → (seq1( · , 𝐹)‘𝑝) = (seq1( · , 𝐹)‘𝑘)) |
9 | 8 | oveq2d 7291 |
. . . . 5
⊢ (𝑝 = 𝑘 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = (𝑃 pCnt (seq1( · , 𝐹)‘𝑘))) |
10 | | breq2 5078 |
. . . . . 6
⊢ (𝑝 = 𝑘 → (𝑃 ≤ 𝑝 ↔ 𝑃 ≤ 𝑘)) |
11 | 10 | ifbid 4482 |
. . . . 5
⊢ (𝑝 = 𝑘 → if(𝑃 ≤ 𝑝, 𝐵, 0) = if(𝑃 ≤ 𝑘, 𝐵, 0)) |
12 | 9, 11 | eqeq12d 2754 |
. . . 4
⊢ (𝑝 = 𝑘 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = if(𝑃 ≤ 𝑝, 𝐵, 0) ↔ (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃 ≤ 𝑘, 𝐵, 0))) |
13 | 12 | imbi2d 341 |
. . 3
⊢ (𝑝 = 𝑘 → ((𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = if(𝑃 ≤ 𝑝, 𝐵, 0)) ↔ (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃 ≤ 𝑘, 𝐵, 0)))) |
14 | | fveq2 6774 |
. . . . . 6
⊢ (𝑝 = (𝑘 + 1) → (seq1( · , 𝐹)‘𝑝) = (seq1( · , 𝐹)‘(𝑘 + 1))) |
15 | 14 | oveq2d 7291 |
. . . . 5
⊢ (𝑝 = (𝑘 + 1) → (𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1)))) |
16 | | breq2 5078 |
. . . . . 6
⊢ (𝑝 = (𝑘 + 1) → (𝑃 ≤ 𝑝 ↔ 𝑃 ≤ (𝑘 + 1))) |
17 | 16 | ifbid 4482 |
. . . . 5
⊢ (𝑝 = (𝑘 + 1) → if(𝑃 ≤ 𝑝, 𝐵, 0) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0)) |
18 | 15, 17 | eqeq12d 2754 |
. . . 4
⊢ (𝑝 = (𝑘 + 1) → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = if(𝑃 ≤ 𝑝, 𝐵, 0) ↔ (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0))) |
19 | 18 | imbi2d 341 |
. . 3
⊢ (𝑝 = (𝑘 + 1) → ((𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = if(𝑃 ≤ 𝑝, 𝐵, 0)) ↔ (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0)))) |
20 | | fveq2 6774 |
. . . . . 6
⊢ (𝑝 = 𝑁 → (seq1( · , 𝐹)‘𝑝) = (seq1( · , 𝐹)‘𝑁)) |
21 | 20 | oveq2d 7291 |
. . . . 5
⊢ (𝑝 = 𝑁 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = (𝑃 pCnt (seq1( · , 𝐹)‘𝑁))) |
22 | | breq2 5078 |
. . . . . 6
⊢ (𝑝 = 𝑁 → (𝑃 ≤ 𝑝 ↔ 𝑃 ≤ 𝑁)) |
23 | 22 | ifbid 4482 |
. . . . 5
⊢ (𝑝 = 𝑁 → if(𝑃 ≤ 𝑝, 𝐵, 0) = if(𝑃 ≤ 𝑁, 𝐵, 0)) |
24 | 21, 23 | eqeq12d 2754 |
. . . 4
⊢ (𝑝 = 𝑁 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = if(𝑃 ≤ 𝑝, 𝐵, 0) ↔ (𝑃 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑃 ≤ 𝑁, 𝐵, 0))) |
25 | 24 | imbi2d 341 |
. . 3
⊢ (𝑝 = 𝑁 → ((𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = if(𝑃 ≤ 𝑝, 𝐵, 0)) ↔ (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑃 ≤ 𝑁, 𝐵, 0)))) |
26 | | pcmpt.4 |
. . . 4
⊢ (𝜑 → 𝑃 ∈ ℙ) |
27 | | 1z 12350 |
. . . . . . . . 9
⊢ 1 ∈
ℤ |
28 | | seq1 13734 |
. . . . . . . . 9
⊢ (1 ∈
ℤ → (seq1( · , 𝐹)‘1) = (𝐹‘1)) |
29 | 27, 28 | ax-mp 5 |
. . . . . . . 8
⊢ (seq1(
· , 𝐹)‘1) =
(𝐹‘1) |
30 | | 1nn 11984 |
. . . . . . . . 9
⊢ 1 ∈
ℕ |
31 | | 1nprm 16384 |
. . . . . . . . . . . 12
⊢ ¬ 1
∈ ℙ |
32 | | eleq1 2826 |
. . . . . . . . . . . 12
⊢ (𝑛 = 1 → (𝑛 ∈ ℙ ↔ 1 ∈
ℙ)) |
33 | 31, 32 | mtbiri 327 |
. . . . . . . . . . 11
⊢ (𝑛 = 1 → ¬ 𝑛 ∈
ℙ) |
34 | 33 | iffalsed 4470 |
. . . . . . . . . 10
⊢ (𝑛 = 1 → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) = 1) |
35 | | pcmpt.1 |
. . . . . . . . . 10
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1)) |
36 | | 1ex 10971 |
. . . . . . . . . 10
⊢ 1 ∈
V |
37 | 34, 35, 36 | fvmpt 6875 |
. . . . . . . . 9
⊢ (1 ∈
ℕ → (𝐹‘1)
= 1) |
38 | 30, 37 | ax-mp 5 |
. . . . . . . 8
⊢ (𝐹‘1) = 1 |
39 | 29, 38 | eqtri 2766 |
. . . . . . 7
⊢ (seq1(
· , 𝐹)‘1) =
1 |
40 | 39 | oveq2i 7286 |
. . . . . 6
⊢ (𝑃 pCnt (seq1( · , 𝐹)‘1)) = (𝑃 pCnt 1) |
41 | | pc1 16556 |
. . . . . 6
⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 1) = 0) |
42 | 40, 41 | eqtrid 2790 |
. . . . 5
⊢ (𝑃 ∈ ℙ → (𝑃 pCnt (seq1( · , 𝐹)‘1)) =
0) |
43 | | prmgt1 16402 |
. . . . . . 7
⊢ (𝑃 ∈ ℙ → 1 <
𝑃) |
44 | | 1re 10975 |
. . . . . . . 8
⊢ 1 ∈
ℝ |
45 | | prmuz2 16401 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
(ℤ≥‘2)) |
46 | | eluzelre 12593 |
. . . . . . . . 9
⊢ (𝑃 ∈
(ℤ≥‘2) → 𝑃 ∈ ℝ) |
47 | 45, 46 | syl 17 |
. . . . . . . 8
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℝ) |
48 | | ltnle 11054 |
. . . . . . . 8
⊢ ((1
∈ ℝ ∧ 𝑃
∈ ℝ) → (1 < 𝑃 ↔ ¬ 𝑃 ≤ 1)) |
49 | 44, 47, 48 | sylancr 587 |
. . . . . . 7
⊢ (𝑃 ∈ ℙ → (1 <
𝑃 ↔ ¬ 𝑃 ≤ 1)) |
50 | 43, 49 | mpbid 231 |
. . . . . 6
⊢ (𝑃 ∈ ℙ → ¬
𝑃 ≤ 1) |
51 | 50 | iffalsed 4470 |
. . . . 5
⊢ (𝑃 ∈ ℙ → if(𝑃 ≤ 1, 𝐵, 0) = 0) |
52 | 42, 51 | eqtr4d 2781 |
. . . 4
⊢ (𝑃 ∈ ℙ → (𝑃 pCnt (seq1( · , 𝐹)‘1)) = if(𝑃 ≤ 1, 𝐵, 0)) |
53 | 26, 52 | syl 17 |
. . 3
⊢ (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘1)) = if(𝑃 ≤ 1, 𝐵, 0)) |
54 | 26 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → 𝑃 ∈ ℙ) |
55 | | pcmpt.2 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈
ℕ0) |
56 | 35, 55 | pcmptcl 16592 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( ·
, 𝐹):ℕ⟶ℕ)) |
57 | 56 | simpld 495 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹:ℕ⟶ℕ) |
58 | | peano2nn 11985 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℕ → (𝑘 + 1) ∈
ℕ) |
59 | | ffvelrn 6959 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:ℕ⟶ℕ ∧
(𝑘 + 1) ∈ ℕ)
→ (𝐹‘(𝑘 + 1)) ∈
ℕ) |
60 | 57, 58, 59 | syl2an 596 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℕ) |
61 | 60 | adantrr 714 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝐹‘(𝑘 + 1)) ∈ ℕ) |
62 | 54, 61 | pccld 16551 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑃 pCnt (𝐹‘(𝑘 + 1))) ∈
ℕ0) |
63 | 62 | nn0cnd 12295 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑃 pCnt (𝐹‘(𝑘 + 1))) ∈ ℂ) |
64 | 63 | addid2d 11176 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (0 + (𝑃 pCnt (𝐹‘(𝑘 + 1)))) = (𝑃 pCnt (𝐹‘(𝑘 + 1)))) |
65 | 58 | ad2antrl 725 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑘 + 1) ∈ ℕ) |
66 | | ovex 7308 |
. . . . . . . . . . . . . . 15
⊢ (𝑛↑𝐴) ∈ V |
67 | 66, 36 | ifex 4509 |
. . . . . . . . . . . . . 14
⊢ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ V |
68 | 67 | csbex 5235 |
. . . . . . . . . . . . 13
⊢
⦋(𝑘 +
1) / 𝑛⦌if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ V |
69 | 35 | fvmpts 6878 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 + 1) ∈ ℕ ∧
⦋(𝑘 + 1) /
𝑛⦌if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ V) → (𝐹‘(𝑘 + 1)) = ⦋(𝑘 + 1) / 𝑛⦌if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1)) |
70 | | ovex 7308 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 + 1) ∈ V |
71 | | nfv 1917 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑛(𝑘 + 1) ∈
ℙ |
72 | | nfcv 2907 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑛(𝑘 + 1) |
73 | | nfcv 2907 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑛↑ |
74 | | nfcsb1v 3857 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑛⦋(𝑘 + 1) / 𝑛⦌𝐴 |
75 | 72, 73, 74 | nfov 7305 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑛((𝑘 + 1)↑⦋(𝑘 + 1) / 𝑛⦌𝐴) |
76 | | nfcv 2907 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑛1 |
77 | 71, 75, 76 | nfif 4489 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑛if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑⦋(𝑘 + 1) / 𝑛⦌𝐴), 1) |
78 | | eleq1 2826 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = (𝑘 + 1) → (𝑛 ∈ ℙ ↔ (𝑘 + 1) ∈ ℙ)) |
79 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = (𝑘 + 1) → 𝑛 = (𝑘 + 1)) |
80 | | csbeq1a 3846 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = (𝑘 + 1) → 𝐴 = ⦋(𝑘 + 1) / 𝑛⦌𝐴) |
81 | 79, 80 | oveq12d 7293 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = (𝑘 + 1) → (𝑛↑𝐴) = ((𝑘 + 1)↑⦋(𝑘 + 1) / 𝑛⦌𝐴)) |
82 | 78, 81 | ifbieq1d 4483 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = (𝑘 + 1) → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) = if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑⦋(𝑘 + 1) / 𝑛⦌𝐴), 1)) |
83 | 70, 77, 82 | csbief 3867 |
. . . . . . . . . . . . . 14
⊢
⦋(𝑘 +
1) / 𝑛⦌if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) = if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑⦋(𝑘 + 1) / 𝑛⦌𝐴), 1) |
84 | 69, 83 | eqtrdi 2794 |
. . . . . . . . . . . . 13
⊢ (((𝑘 + 1) ∈ ℕ ∧
⦋(𝑘 + 1) /
𝑛⦌if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) ∈ V) → (𝐹‘(𝑘 + 1)) = if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑⦋(𝑘 + 1) / 𝑛⦌𝐴), 1)) |
85 | 65, 68, 84 | sylancl 586 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝐹‘(𝑘 + 1)) = if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑⦋(𝑘 + 1) / 𝑛⦌𝐴), 1)) |
86 | | simprr 770 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑘 + 1) = 𝑃) |
87 | 86, 54 | eqeltrd 2839 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑘 + 1) ∈ ℙ) |
88 | 87 | iftrued 4467 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑⦋(𝑘 + 1) / 𝑛⦌𝐴), 1) = ((𝑘 + 1)↑⦋(𝑘 + 1) / 𝑛⦌𝐴)) |
89 | 86 | csbeq1d 3836 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → ⦋(𝑘 + 1) / 𝑛⦌𝐴 = ⦋𝑃 / 𝑛⦌𝐴) |
90 | | nfcvd 2908 |
. . . . . . . . . . . . . . . 16
⊢ (𝑃 ∈ ℙ →
Ⅎ𝑛𝐵) |
91 | | pcmpt.5 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑃 → 𝐴 = 𝐵) |
92 | 90, 91 | csbiegf 3866 |
. . . . . . . . . . . . . . 15
⊢ (𝑃 ∈ ℙ →
⦋𝑃 / 𝑛⦌𝐴 = 𝐵) |
93 | 54, 92 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → ⦋𝑃 / 𝑛⦌𝐴 = 𝐵) |
94 | 89, 93 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → ⦋(𝑘 + 1) / 𝑛⦌𝐴 = 𝐵) |
95 | 86, 94 | oveq12d 7293 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → ((𝑘 + 1)↑⦋(𝑘 + 1) / 𝑛⦌𝐴) = (𝑃↑𝐵)) |
96 | 85, 88, 95 | 3eqtrd 2782 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝐹‘(𝑘 + 1)) = (𝑃↑𝐵)) |
97 | 96 | oveq2d 7291 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑃 pCnt (𝐹‘(𝑘 + 1))) = (𝑃 pCnt (𝑃↑𝐵))) |
98 | 91 | eleq1d 2823 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑃 → (𝐴 ∈ ℕ0 ↔ 𝐵 ∈
ℕ0)) |
99 | 98 | rspcv 3557 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∈ ℙ →
(∀𝑛 ∈ ℙ
𝐴 ∈
ℕ0 → 𝐵 ∈
ℕ0)) |
100 | 26, 55, 99 | sylc 65 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈
ℕ0) |
101 | 100 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → 𝐵 ∈
ℕ0) |
102 | | pcidlem 16573 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℕ0)
→ (𝑃 pCnt (𝑃↑𝐵)) = 𝐵) |
103 | 54, 101, 102 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑃 pCnt (𝑃↑𝐵)) = 𝐵) |
104 | 64, 97, 103 | 3eqtrd 2782 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (0 + (𝑃 pCnt (𝐹‘(𝑘 + 1)))) = 𝐵) |
105 | | oveq1 7282 |
. . . . . . . . . 10
⊢ ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = 0 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))) = (0 + (𝑃 pCnt (𝐹‘(𝑘 + 1))))) |
106 | 105 | eqeq1d 2740 |
. . . . . . . . 9
⊢ ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = 0 → (((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))) = 𝐵 ↔ (0 + (𝑃 pCnt (𝐹‘(𝑘 + 1)))) = 𝐵)) |
107 | 104, 106 | syl5ibrcom 246 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = 0 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))) = 𝐵)) |
108 | | nnre 11980 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℝ) |
109 | 108 | ad2antrl 725 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → 𝑘 ∈ ℝ) |
110 | | ltp1 11815 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℝ → 𝑘 < (𝑘 + 1)) |
111 | | peano2re 11148 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℝ → (𝑘 + 1) ∈
ℝ) |
112 | | ltnle 11054 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ) →
(𝑘 < (𝑘 + 1) ↔ ¬ (𝑘 + 1) ≤ 𝑘)) |
113 | 111, 112 | mpdan 684 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℝ → (𝑘 < (𝑘 + 1) ↔ ¬ (𝑘 + 1) ≤ 𝑘)) |
114 | 110, 113 | mpbid 231 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℝ → ¬
(𝑘 + 1) ≤ 𝑘) |
115 | 109, 114 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → ¬ (𝑘 + 1) ≤ 𝑘) |
116 | 86 | breq1d 5084 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → ((𝑘 + 1) ≤ 𝑘 ↔ 𝑃 ≤ 𝑘)) |
117 | 115, 116 | mtbid 324 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → ¬ 𝑃 ≤ 𝑘) |
118 | 117 | iffalsed 4470 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → if(𝑃 ≤ 𝑘, 𝐵, 0) = 0) |
119 | 118 | eqeq2d 2749 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃 ≤ 𝑘, 𝐵, 0) ↔ (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = 0)) |
120 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) |
121 | | nnuz 12621 |
. . . . . . . . . . . . . 14
⊢ ℕ =
(ℤ≥‘1) |
122 | 120, 121 | eleqtrdi 2849 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈
(ℤ≥‘1)) |
123 | | seqp1 13736 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈
(ℤ≥‘1) → (seq1( · , 𝐹)‘(𝑘 + 1)) = ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1)))) |
124 | 122, 123 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (seq1( · ,
𝐹)‘(𝑘 + 1)) = ((seq1( · ,
𝐹)‘𝑘) · (𝐹‘(𝑘 + 1)))) |
125 | 124 | oveq2d 7291 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = (𝑃 pCnt ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))))) |
126 | 26 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑃 ∈ ℙ) |
127 | 56 | simprd 496 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → seq1( · , 𝐹):ℕ⟶ℕ) |
128 | 127 | ffvelrnda 6961 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (seq1( · ,
𝐹)‘𝑘) ∈ ℕ) |
129 | | nnz 12342 |
. . . . . . . . . . . . . 14
⊢ ((seq1(
· , 𝐹)‘𝑘) ∈ ℕ → (seq1(
· , 𝐹)‘𝑘) ∈
ℤ) |
130 | | nnne0 12007 |
. . . . . . . . . . . . . 14
⊢ ((seq1(
· , 𝐹)‘𝑘) ∈ ℕ → (seq1(
· , 𝐹)‘𝑘) ≠ 0) |
131 | 129, 130 | jca 512 |
. . . . . . . . . . . . 13
⊢ ((seq1(
· , 𝐹)‘𝑘) ∈ ℕ → ((seq1(
· , 𝐹)‘𝑘) ∈ ℤ ∧ (seq1(
· , 𝐹)‘𝑘) ≠ 0)) |
132 | 128, 131 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((seq1( · ,
𝐹)‘𝑘) ∈ ℤ ∧ (seq1( · ,
𝐹)‘𝑘) ≠ 0)) |
133 | | nnz 12342 |
. . . . . . . . . . . . . 14
⊢ ((𝐹‘(𝑘 + 1)) ∈ ℕ → (𝐹‘(𝑘 + 1)) ∈ ℤ) |
134 | | nnne0 12007 |
. . . . . . . . . . . . . 14
⊢ ((𝐹‘(𝑘 + 1)) ∈ ℕ → (𝐹‘(𝑘 + 1)) ≠ 0) |
135 | 133, 134 | jca 512 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘(𝑘 + 1)) ∈ ℕ → ((𝐹‘(𝑘 + 1)) ∈ ℤ ∧ (𝐹‘(𝑘 + 1)) ≠ 0)) |
136 | 60, 135 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘(𝑘 + 1)) ∈ ℤ ∧ (𝐹‘(𝑘 + 1)) ≠ 0)) |
137 | | pcmul 16552 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℙ ∧ ((seq1(
· , 𝐹)‘𝑘) ∈ ℤ ∧ (seq1(
· , 𝐹)‘𝑘) ≠ 0) ∧ ((𝐹‘(𝑘 + 1)) ∈ ℤ ∧ (𝐹‘(𝑘 + 1)) ≠ 0)) → (𝑃 pCnt ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1)))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1))))) |
138 | 126, 132,
136, 137 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑃 pCnt ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1)))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1))))) |
139 | 125, 138 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1))))) |
140 | 139 | adantrr 714 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1))))) |
141 | | prmnn 16379 |
. . . . . . . . . . . . . . 15
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
142 | 26, 141 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑃 ∈ ℕ) |
143 | 142 | nnred 11988 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑃 ∈ ℝ) |
144 | 143 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → 𝑃 ∈ ℝ) |
145 | 144 | leidd 11541 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → 𝑃 ≤ 𝑃) |
146 | 145, 86 | breqtrrd 5102 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → 𝑃 ≤ (𝑘 + 1)) |
147 | 146 | iftrued 4467 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → if(𝑃 ≤ (𝑘 + 1), 𝐵, 0) = 𝐵) |
148 | 140, 147 | eqeq12d 2754 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → ((𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0) ↔ ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))) = 𝐵)) |
149 | 107, 119,
148 | 3imtr4d 294 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃 ≤ 𝑘, 𝐵, 0) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0))) |
150 | 149 | expr 457 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑘 + 1) = 𝑃 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃 ≤ 𝑘, 𝐵, 0) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0)))) |
151 | 139 | adantrr 714 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1))))) |
152 | | simplrr 775 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝑘 + 1) ≠ 𝑃) |
153 | 152 | necomd 2999 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → 𝑃 ≠ (𝑘 + 1)) |
154 | 26 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → 𝑃 ∈
ℙ) |
155 | | simpr 485 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝑘 + 1) ∈
ℙ) |
156 | 55 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → ∀𝑛 ∈ ℙ 𝐴 ∈
ℕ0) |
157 | 74 | nfel1 2923 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑛⦋(𝑘 + 1) / 𝑛⦌𝐴 ∈ ℕ0 |
158 | 80 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = (𝑘 + 1) → (𝐴 ∈ ℕ0 ↔
⦋(𝑘 + 1) /
𝑛⦌𝐴 ∈
ℕ0)) |
159 | 157, 158 | rspc 3549 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 + 1) ∈ ℙ →
(∀𝑛 ∈ ℙ
𝐴 ∈
ℕ0 → ⦋(𝑘 + 1) / 𝑛⦌𝐴 ∈
ℕ0)) |
160 | 155, 156,
159 | sylc 65 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) →
⦋(𝑘 + 1) /
𝑛⦌𝐴 ∈
ℕ0) |
161 | | prmdvdsexpr 16422 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃 ∈ ℙ ∧ (𝑘 + 1) ∈ ℙ ∧
⦋(𝑘 + 1) /
𝑛⦌𝐴 ∈ ℕ0)
→ (𝑃 ∥ ((𝑘 + 1)↑⦋(𝑘 + 1) / 𝑛⦌𝐴) → 𝑃 = (𝑘 + 1))) |
162 | 154, 155,
160, 161 | syl3anc 1370 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝑃 ∥ ((𝑘 + 1)↑⦋(𝑘 + 1) / 𝑛⦌𝐴) → 𝑃 = (𝑘 + 1))) |
163 | 162 | necon3ad 2956 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝑃 ≠ (𝑘 + 1) → ¬ 𝑃 ∥ ((𝑘 + 1)↑⦋(𝑘 + 1) / 𝑛⦌𝐴))) |
164 | 153, 163 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → ¬ 𝑃 ∥ ((𝑘 + 1)↑⦋(𝑘 + 1) / 𝑛⦌𝐴)) |
165 | 58 | ad2antrl 725 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑘 + 1) ∈ ℕ) |
166 | 165, 68, 84 | sylancl 586 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝐹‘(𝑘 + 1)) = if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑⦋(𝑘 + 1) / 𝑛⦌𝐴), 1)) |
167 | | iftrue 4465 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 + 1) ∈ ℙ →
if((𝑘 + 1) ∈ ℙ,
((𝑘 +
1)↑⦋(𝑘 +
1) / 𝑛⦌𝐴), 1) = ((𝑘 + 1)↑⦋(𝑘 + 1) / 𝑛⦌𝐴)) |
168 | 166, 167 | sylan9eq 2798 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝐹‘(𝑘 + 1)) = ((𝑘 + 1)↑⦋(𝑘 + 1) / 𝑛⦌𝐴)) |
169 | 168 | breq2d 5086 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝑃 ∥ (𝐹‘(𝑘 + 1)) ↔ 𝑃 ∥ ((𝑘 + 1)↑⦋(𝑘 + 1) / 𝑛⦌𝐴))) |
170 | 164, 169 | mtbird 325 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → ¬ 𝑃 ∥ (𝐹‘(𝑘 + 1))) |
171 | 57 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → 𝐹:ℕ⟶ℕ) |
172 | 171, 165,
59 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝐹‘(𝑘 + 1)) ∈ ℕ) |
173 | 172 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝐹‘(𝑘 + 1)) ∈ ℕ) |
174 | | pceq0 16572 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ∈ ℙ ∧ (𝐹‘(𝑘 + 1)) ∈ ℕ) → ((𝑃 pCnt (𝐹‘(𝑘 + 1))) = 0 ↔ ¬ 𝑃 ∥ (𝐹‘(𝑘 + 1)))) |
175 | 154, 173,
174 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → ((𝑃 pCnt (𝐹‘(𝑘 + 1))) = 0 ↔ ¬ 𝑃 ∥ (𝐹‘(𝑘 + 1)))) |
176 | 170, 175 | mpbird 256 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝑃 pCnt (𝐹‘(𝑘 + 1))) = 0) |
177 | | iffalse 4468 |
. . . . . . . . . . . . . . 15
⊢ (¬
(𝑘 + 1) ∈ ℙ
→ if((𝑘 + 1) ∈
ℙ, ((𝑘 +
1)↑⦋(𝑘 +
1) / 𝑛⦌𝐴), 1) = 1) |
178 | 166, 177 | sylan9eq 2798 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (𝐹‘(𝑘 + 1)) = 1) |
179 | 178 | oveq2d 7291 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (𝑃 pCnt (𝐹‘(𝑘 + 1))) = (𝑃 pCnt 1)) |
180 | 26, 41 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑃 pCnt 1) = 0) |
181 | 180 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (𝑃 pCnt 1) = 0) |
182 | 179, 181 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (𝑃 pCnt (𝐹‘(𝑘 + 1))) = 0) |
183 | 176, 182 | pm2.61dan 810 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃 pCnt (𝐹‘(𝑘 + 1))) = 0) |
184 | 183 | oveq2d 7291 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + 0)) |
185 | 26 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → 𝑃 ∈ ℙ) |
186 | 128 | adantrr 714 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (seq1( · , 𝐹)‘𝑘) ∈ ℕ) |
187 | 185, 186 | pccld 16551 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) ∈
ℕ0) |
188 | 187 | nn0cnd 12295 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) ∈ ℂ) |
189 | 188 | addid1d 11175 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + 0) = (𝑃 pCnt (seq1( · , 𝐹)‘𝑘))) |
190 | 151, 184,
189 | 3eqtrd 2782 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = (𝑃 pCnt (seq1( · , 𝐹)‘𝑘))) |
191 | 142 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → 𝑃 ∈ ℕ) |
192 | 191 | nnred 11988 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → 𝑃 ∈ ℝ) |
193 | 165 | nnred 11988 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑘 + 1) ∈ ℝ) |
194 | 192, 193 | ltlend 11120 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃 < (𝑘 + 1) ↔ (𝑃 ≤ (𝑘 + 1) ∧ (𝑘 + 1) ≠ 𝑃))) |
195 | | simprl 768 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → 𝑘 ∈ ℕ) |
196 | | nnleltp1 12375 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (𝑃 ≤ 𝑘 ↔ 𝑃 < (𝑘 + 1))) |
197 | 191, 195,
196 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃 ≤ 𝑘 ↔ 𝑃 < (𝑘 + 1))) |
198 | | simprr 770 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑘 + 1) ≠ 𝑃) |
199 | 198 | biantrud 532 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃 ≤ (𝑘 + 1) ↔ (𝑃 ≤ (𝑘 + 1) ∧ (𝑘 + 1) ≠ 𝑃))) |
200 | 194, 197,
199 | 3bitr4rd 312 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃 ≤ (𝑘 + 1) ↔ 𝑃 ≤ 𝑘)) |
201 | 200 | ifbid 4482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → if(𝑃 ≤ (𝑘 + 1), 𝐵, 0) = if(𝑃 ≤ 𝑘, 𝐵, 0)) |
202 | 190, 201 | eqeq12d 2754 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → ((𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0) ↔ (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃 ≤ 𝑘, 𝐵, 0))) |
203 | 202 | biimprd 247 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃 ≤ 𝑘, 𝐵, 0) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0))) |
204 | 203 | expr 457 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑘 + 1) ≠ 𝑃 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃 ≤ 𝑘, 𝐵, 0) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0)))) |
205 | 150, 204 | pm2.61dne 3031 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃 ≤ 𝑘, 𝐵, 0) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0))) |
206 | 205 | expcom 414 |
. . . 4
⊢ (𝑘 ∈ ℕ → (𝜑 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃 ≤ 𝑘, 𝐵, 0) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0)))) |
207 | 206 | a2d 29 |
. . 3
⊢ (𝑘 ∈ ℕ → ((𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃 ≤ 𝑘, 𝐵, 0)) → (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0)))) |
208 | 7, 13, 19, 25, 53, 207 | nnind 11991 |
. 2
⊢ (𝑁 ∈ ℕ → (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑃 ≤ 𝑁, 𝐵, 0))) |
209 | 1, 208 | mpcom 38 |
1
⊢ (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑃 ≤ 𝑁, 𝐵, 0)) |