MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzrdgfni Structured version   Visualization version   GIF version

Theorem uzrdgfni 13857
Description: The recursive definition generator on upper integers is a function. See comment in om2uzrdg 13855. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 4-May-2015.)
Hypotheses
Ref Expression
om2uz.1 𝐶 ∈ ℤ
om2uz.2 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
uzrdg.1 𝐴 ∈ V
uzrdg.2 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)
uzrdg.3 𝑆 = ran 𝑅
Assertion
Ref Expression
uzrdgfni 𝑆 Fn (ℤ𝐶)
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝐶   𝑦,𝐺   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐺(𝑥)

Proof of Theorem uzrdgfni
Dummy variables 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzrdg.3 . . . . . . . . 9 𝑆 = ran 𝑅
21eleq2i 2821 . . . . . . . 8 (𝑧𝑆𝑧 ∈ ran 𝑅)
3 frfnom 8349 . . . . . . . . . 10 (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω) Fn ω
4 uzrdg.2 . . . . . . . . . . 11 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)
54fneq1i 6574 . . . . . . . . . 10 (𝑅 Fn ω ↔ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω) Fn ω)
63, 5mpbir 231 . . . . . . . . 9 𝑅 Fn ω
7 fvelrnb 6877 . . . . . . . . 9 (𝑅 Fn ω → (𝑧 ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = 𝑧))
86, 7ax-mp 5 . . . . . . . 8 (𝑧 ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = 𝑧)
92, 8bitri 275 . . . . . . 7 (𝑧𝑆 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = 𝑧)
10 om2uz.1 . . . . . . . . . . 11 𝐶 ∈ ℤ
11 om2uz.2 . . . . . . . . . . 11 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
12 uzrdg.1 . . . . . . . . . . 11 𝐴 ∈ V
1310, 11, 12, 4om2uzrdg 13855 . . . . . . . . . 10 (𝑤 ∈ ω → (𝑅𝑤) = ⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩)
1410, 11om2uzuzi 13848 . . . . . . . . . . 11 (𝑤 ∈ ω → (𝐺𝑤) ∈ (ℤ𝐶))
15 fvex 6830 . . . . . . . . . . 11 (2nd ‘(𝑅𝑤)) ∈ V
16 opelxpi 5651 . . . . . . . . . . 11 (((𝐺𝑤) ∈ (ℤ𝐶) ∧ (2nd ‘(𝑅𝑤)) ∈ V) → ⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ ∈ ((ℤ𝐶) × V))
1714, 15, 16sylancl 586 . . . . . . . . . 10 (𝑤 ∈ ω → ⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ ∈ ((ℤ𝐶) × V))
1813, 17eqeltrd 2829 . . . . . . . . 9 (𝑤 ∈ ω → (𝑅𝑤) ∈ ((ℤ𝐶) × V))
19 eleq1 2817 . . . . . . . . 9 ((𝑅𝑤) = 𝑧 → ((𝑅𝑤) ∈ ((ℤ𝐶) × V) ↔ 𝑧 ∈ ((ℤ𝐶) × V)))
2018, 19syl5ibcom 245 . . . . . . . 8 (𝑤 ∈ ω → ((𝑅𝑤) = 𝑧𝑧 ∈ ((ℤ𝐶) × V)))
2120rexlimiv 3124 . . . . . . 7 (∃𝑤 ∈ ω (𝑅𝑤) = 𝑧𝑧 ∈ ((ℤ𝐶) × V))
229, 21sylbi 217 . . . . . 6 (𝑧𝑆𝑧 ∈ ((ℤ𝐶) × V))
2322ssriv 3936 . . . . 5 𝑆 ⊆ ((ℤ𝐶) × V)
24 xpss 5630 . . . . 5 ((ℤ𝐶) × V) ⊆ (V × V)
2523, 24sstri 3942 . . . 4 𝑆 ⊆ (V × V)
26 df-rel 5621 . . . 4 (Rel 𝑆𝑆 ⊆ (V × V))
2725, 26mpbir 231 . . 3 Rel 𝑆
28 fvex 6830 . . . . . 6 (2nd ‘(𝑅‘(𝐺𝑣))) ∈ V
29 eqeq2 2742 . . . . . . . 8 (𝑤 = (2nd ‘(𝑅‘(𝐺𝑣))) → (𝑧 = 𝑤𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
3029imbi2d 340 . . . . . . 7 (𝑤 = (2nd ‘(𝑅‘(𝐺𝑣))) → ((⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = 𝑤) ↔ (⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = (2nd ‘(𝑅‘(𝐺𝑣))))))
3130albidv 1921 . . . . . 6 (𝑤 = (2nd ‘(𝑅‘(𝐺𝑣))) → (∀𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = 𝑤) ↔ ∀𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = (2nd ‘(𝑅‘(𝐺𝑣))))))
3228, 31spcev 3559 . . . . 5 (∀𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))) → ∃𝑤𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = 𝑤))
331eleq2i 2821 . . . . . . 7 (⟨𝑣, 𝑧⟩ ∈ 𝑆 ↔ ⟨𝑣, 𝑧⟩ ∈ ran 𝑅)
34 fvelrnb 6877 . . . . . . . 8 (𝑅 Fn ω → (⟨𝑣, 𝑧⟩ ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩))
356, 34ax-mp 5 . . . . . . 7 (⟨𝑣, 𝑧⟩ ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩)
3633, 35bitri 275 . . . . . 6 (⟨𝑣, 𝑧⟩ ∈ 𝑆 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩)
3713eqeq1d 2732 . . . . . . . . . . . 12 (𝑤 ∈ ω → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ ↔ ⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ = ⟨𝑣, 𝑧⟩))
38 fvex 6830 . . . . . . . . . . . . 13 (𝐺𝑤) ∈ V
3938, 15opth1 5413 . . . . . . . . . . . 12 (⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ = ⟨𝑣, 𝑧⟩ → (𝐺𝑤) = 𝑣)
4037, 39biimtrdi 253 . . . . . . . . . . 11 (𝑤 ∈ ω → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → (𝐺𝑤) = 𝑣))
4110, 11om2uzf1oi 13852 . . . . . . . . . . . 12 𝐺:ω–1-1-onto→(ℤ𝐶)
42 f1ocnvfv 7207 . . . . . . . . . . . 12 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ 𝑤 ∈ ω) → ((𝐺𝑤) = 𝑣 → (𝐺𝑣) = 𝑤))
4341, 42mpan 690 . . . . . . . . . . 11 (𝑤 ∈ ω → ((𝐺𝑤) = 𝑣 → (𝐺𝑣) = 𝑤))
4440, 43syld 47 . . . . . . . . . 10 (𝑤 ∈ ω → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → (𝐺𝑣) = 𝑤))
45 2fveq3 6822 . . . . . . . . . 10 ((𝐺𝑣) = 𝑤 → (2nd ‘(𝑅‘(𝐺𝑣))) = (2nd ‘(𝑅𝑤)))
4644, 45syl6 35 . . . . . . . . 9 (𝑤 ∈ ω → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → (2nd ‘(𝑅‘(𝐺𝑣))) = (2nd ‘(𝑅𝑤))))
4746imp 406 . . . . . . . 8 ((𝑤 ∈ ω ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩) → (2nd ‘(𝑅‘(𝐺𝑣))) = (2nd ‘(𝑅𝑤)))
48 vex 3438 . . . . . . . . . 10 𝑣 ∈ V
49 vex 3438 . . . . . . . . . 10 𝑧 ∈ V
5048, 49op2ndd 7927 . . . . . . . . 9 ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → (2nd ‘(𝑅𝑤)) = 𝑧)
5150adantl 481 . . . . . . . 8 ((𝑤 ∈ ω ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩) → (2nd ‘(𝑅𝑤)) = 𝑧)
5247, 51eqtr2d 2766 . . . . . . 7 ((𝑤 ∈ ω ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩) → 𝑧 = (2nd ‘(𝑅‘(𝐺𝑣))))
5352rexlimiva 3123 . . . . . 6 (∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩ → 𝑧 = (2nd ‘(𝑅‘(𝐺𝑣))))
5436, 53sylbi 217 . . . . 5 (⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = (2nd ‘(𝑅‘(𝐺𝑣))))
5532, 54mpg 1798 . . . 4 𝑤𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = 𝑤)
5655ax-gen 1796 . . 3 𝑣𝑤𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = 𝑤)
57 dffun5 6491 . . 3 (Fun 𝑆 ↔ (Rel 𝑆 ∧ ∀𝑣𝑤𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = 𝑤)))
5827, 56, 57mpbir2an 711 . 2 Fun 𝑆
59 dmss 5840 . . . . 5 (𝑆 ⊆ ((ℤ𝐶) × V) → dom 𝑆 ⊆ dom ((ℤ𝐶) × V))
6023, 59ax-mp 5 . . . 4 dom 𝑆 ⊆ dom ((ℤ𝐶) × V)
61 dmxpss 6115 . . . 4 dom ((ℤ𝐶) × V) ⊆ (ℤ𝐶)
6260, 61sstri 3942 . . 3 dom 𝑆 ⊆ (ℤ𝐶)
6310, 11, 12, 4uzrdglem 13856 . . . . . 6 (𝑣 ∈ (ℤ𝐶) → ⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ ran 𝑅)
6463, 1eleqtrrdi 2840 . . . . 5 (𝑣 ∈ (ℤ𝐶) → ⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ 𝑆)
6548, 28opeldm 5845 . . . . 5 (⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ 𝑆𝑣 ∈ dom 𝑆)
6664, 65syl 17 . . . 4 (𝑣 ∈ (ℤ𝐶) → 𝑣 ∈ dom 𝑆)
6766ssriv 3936 . . 3 (ℤ𝐶) ⊆ dom 𝑆
6862, 67eqssi 3949 . 2 dom 𝑆 = (ℤ𝐶)
69 df-fn 6480 . 2 (𝑆 Fn (ℤ𝐶) ↔ (Fun 𝑆 ∧ dom 𝑆 = (ℤ𝐶)))
7058, 68, 69mpbir2an 711 1 𝑆 Fn (ℤ𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wex 1780  wcel 2110  wrex 3054  Vcvv 3434  wss 3900  cop 4580  cmpt 5170   × cxp 5612  ccnv 5613  dom cdm 5614  ran crn 5615  cres 5616  Rel wrel 5619  Fun wfun 6471   Fn wfn 6472  1-1-ontowf1o 6476  cfv 6477  (class class class)co 7341  cmpo 7343  ωcom 7791  2nd c2nd 7915  reccrdg 8323  1c1 10999   + caddc 11001  cz 12460  cuz 12724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-n0 12374  df-z 12461  df-uz 12725
This theorem is referenced by:  uzrdg0i  13858  uzrdgsuci  13859  seqfn  13912
  Copyright terms: Public domain W3C validator