MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzrdgfni Structured version   Visualization version   GIF version

Theorem uzrdgfni 13930
Description: The recursive definition generator on upper integers is a function. See comment in om2uzrdg 13928. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 4-May-2015.)
Hypotheses
Ref Expression
om2uz.1 𝐶 ∈ ℤ
om2uz.2 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
uzrdg.1 𝐴 ∈ V
uzrdg.2 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)
uzrdg.3 𝑆 = ran 𝑅
Assertion
Ref Expression
uzrdgfni 𝑆 Fn (ℤ𝐶)
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝐶   𝑦,𝐺   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐺(𝑥)

Proof of Theorem uzrdgfni
Dummy variables 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzrdg.3 . . . . . . . . 9 𝑆 = ran 𝑅
21eleq2i 2824 . . . . . . . 8 (𝑧𝑆𝑧 ∈ ran 𝑅)
3 frfnom 8441 . . . . . . . . . 10 (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω) Fn ω
4 uzrdg.2 . . . . . . . . . . 11 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)
54fneq1i 6646 . . . . . . . . . 10 (𝑅 Fn ω ↔ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω) Fn ω)
63, 5mpbir 230 . . . . . . . . 9 𝑅 Fn ω
7 fvelrnb 6952 . . . . . . . . 9 (𝑅 Fn ω → (𝑧 ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = 𝑧))
86, 7ax-mp 5 . . . . . . . 8 (𝑧 ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = 𝑧)
92, 8bitri 275 . . . . . . 7 (𝑧𝑆 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = 𝑧)
10 om2uz.1 . . . . . . . . . . 11 𝐶 ∈ ℤ
11 om2uz.2 . . . . . . . . . . 11 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
12 uzrdg.1 . . . . . . . . . . 11 𝐴 ∈ V
1310, 11, 12, 4om2uzrdg 13928 . . . . . . . . . 10 (𝑤 ∈ ω → (𝑅𝑤) = ⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩)
1410, 11om2uzuzi 13921 . . . . . . . . . . 11 (𝑤 ∈ ω → (𝐺𝑤) ∈ (ℤ𝐶))
15 fvex 6904 . . . . . . . . . . 11 (2nd ‘(𝑅𝑤)) ∈ V
16 opelxpi 5713 . . . . . . . . . . 11 (((𝐺𝑤) ∈ (ℤ𝐶) ∧ (2nd ‘(𝑅𝑤)) ∈ V) → ⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ ∈ ((ℤ𝐶) × V))
1714, 15, 16sylancl 585 . . . . . . . . . 10 (𝑤 ∈ ω → ⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ ∈ ((ℤ𝐶) × V))
1813, 17eqeltrd 2832 . . . . . . . . 9 (𝑤 ∈ ω → (𝑅𝑤) ∈ ((ℤ𝐶) × V))
19 eleq1 2820 . . . . . . . . 9 ((𝑅𝑤) = 𝑧 → ((𝑅𝑤) ∈ ((ℤ𝐶) × V) ↔ 𝑧 ∈ ((ℤ𝐶) × V)))
2018, 19syl5ibcom 244 . . . . . . . 8 (𝑤 ∈ ω → ((𝑅𝑤) = 𝑧𝑧 ∈ ((ℤ𝐶) × V)))
2120rexlimiv 3147 . . . . . . 7 (∃𝑤 ∈ ω (𝑅𝑤) = 𝑧𝑧 ∈ ((ℤ𝐶) × V))
229, 21sylbi 216 . . . . . 6 (𝑧𝑆𝑧 ∈ ((ℤ𝐶) × V))
2322ssriv 3986 . . . . 5 𝑆 ⊆ ((ℤ𝐶) × V)
24 xpss 5692 . . . . 5 ((ℤ𝐶) × V) ⊆ (V × V)
2523, 24sstri 3991 . . . 4 𝑆 ⊆ (V × V)
26 df-rel 5683 . . . 4 (Rel 𝑆𝑆 ⊆ (V × V))
2725, 26mpbir 230 . . 3 Rel 𝑆
28 fvex 6904 . . . . . 6 (2nd ‘(𝑅‘(𝐺𝑣))) ∈ V
29 eqeq2 2743 . . . . . . . 8 (𝑤 = (2nd ‘(𝑅‘(𝐺𝑣))) → (𝑧 = 𝑤𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
3029imbi2d 340 . . . . . . 7 (𝑤 = (2nd ‘(𝑅‘(𝐺𝑣))) → ((⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = 𝑤) ↔ (⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = (2nd ‘(𝑅‘(𝐺𝑣))))))
3130albidv 1922 . . . . . 6 (𝑤 = (2nd ‘(𝑅‘(𝐺𝑣))) → (∀𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = 𝑤) ↔ ∀𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = (2nd ‘(𝑅‘(𝐺𝑣))))))
3228, 31spcev 3596 . . . . 5 (∀𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))) → ∃𝑤𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = 𝑤))
331eleq2i 2824 . . . . . . 7 (⟨𝑣, 𝑧⟩ ∈ 𝑆 ↔ ⟨𝑣, 𝑧⟩ ∈ ran 𝑅)
34 fvelrnb 6952 . . . . . . . 8 (𝑅 Fn ω → (⟨𝑣, 𝑧⟩ ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩))
356, 34ax-mp 5 . . . . . . 7 (⟨𝑣, 𝑧⟩ ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩)
3633, 35bitri 275 . . . . . 6 (⟨𝑣, 𝑧⟩ ∈ 𝑆 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩)
3713eqeq1d 2733 . . . . . . . . . . . 12 (𝑤 ∈ ω → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ ↔ ⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ = ⟨𝑣, 𝑧⟩))
38 fvex 6904 . . . . . . . . . . . . 13 (𝐺𝑤) ∈ V
3938, 15opth1 5475 . . . . . . . . . . . 12 (⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ = ⟨𝑣, 𝑧⟩ → (𝐺𝑤) = 𝑣)
4037, 39biimtrdi 252 . . . . . . . . . . 11 (𝑤 ∈ ω → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → (𝐺𝑤) = 𝑣))
4110, 11om2uzf1oi 13925 . . . . . . . . . . . 12 𝐺:ω–1-1-onto→(ℤ𝐶)
42 f1ocnvfv 7279 . . . . . . . . . . . 12 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ 𝑤 ∈ ω) → ((𝐺𝑤) = 𝑣 → (𝐺𝑣) = 𝑤))
4341, 42mpan 687 . . . . . . . . . . 11 (𝑤 ∈ ω → ((𝐺𝑤) = 𝑣 → (𝐺𝑣) = 𝑤))
4440, 43syld 47 . . . . . . . . . 10 (𝑤 ∈ ω → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → (𝐺𝑣) = 𝑤))
45 2fveq3 6896 . . . . . . . . . 10 ((𝐺𝑣) = 𝑤 → (2nd ‘(𝑅‘(𝐺𝑣))) = (2nd ‘(𝑅𝑤)))
4644, 45syl6 35 . . . . . . . . 9 (𝑤 ∈ ω → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → (2nd ‘(𝑅‘(𝐺𝑣))) = (2nd ‘(𝑅𝑤))))
4746imp 406 . . . . . . . 8 ((𝑤 ∈ ω ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩) → (2nd ‘(𝑅‘(𝐺𝑣))) = (2nd ‘(𝑅𝑤)))
48 vex 3477 . . . . . . . . . 10 𝑣 ∈ V
49 vex 3477 . . . . . . . . . 10 𝑧 ∈ V
5048, 49op2ndd 7990 . . . . . . . . 9 ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → (2nd ‘(𝑅𝑤)) = 𝑧)
5150adantl 481 . . . . . . . 8 ((𝑤 ∈ ω ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩) → (2nd ‘(𝑅𝑤)) = 𝑧)
5247, 51eqtr2d 2772 . . . . . . 7 ((𝑤 ∈ ω ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩) → 𝑧 = (2nd ‘(𝑅‘(𝐺𝑣))))
5352rexlimiva 3146 . . . . . 6 (∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩ → 𝑧 = (2nd ‘(𝑅‘(𝐺𝑣))))
5436, 53sylbi 216 . . . . 5 (⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = (2nd ‘(𝑅‘(𝐺𝑣))))
5532, 54mpg 1798 . . . 4 𝑤𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = 𝑤)
5655ax-gen 1796 . . 3 𝑣𝑤𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = 𝑤)
57 dffun5 6560 . . 3 (Fun 𝑆 ↔ (Rel 𝑆 ∧ ∀𝑣𝑤𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = 𝑤)))
5827, 56, 57mpbir2an 708 . 2 Fun 𝑆
59 dmss 5902 . . . . 5 (𝑆 ⊆ ((ℤ𝐶) × V) → dom 𝑆 ⊆ dom ((ℤ𝐶) × V))
6023, 59ax-mp 5 . . . 4 dom 𝑆 ⊆ dom ((ℤ𝐶) × V)
61 dmxpss 6170 . . . 4 dom ((ℤ𝐶) × V) ⊆ (ℤ𝐶)
6260, 61sstri 3991 . . 3 dom 𝑆 ⊆ (ℤ𝐶)
6310, 11, 12, 4uzrdglem 13929 . . . . . 6 (𝑣 ∈ (ℤ𝐶) → ⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ ran 𝑅)
6463, 1eleqtrrdi 2843 . . . . 5 (𝑣 ∈ (ℤ𝐶) → ⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ 𝑆)
6548, 28opeldm 5907 . . . . 5 (⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ 𝑆𝑣 ∈ dom 𝑆)
6664, 65syl 17 . . . 4 (𝑣 ∈ (ℤ𝐶) → 𝑣 ∈ dom 𝑆)
6766ssriv 3986 . . 3 (ℤ𝐶) ⊆ dom 𝑆
6862, 67eqssi 3998 . 2 dom 𝑆 = (ℤ𝐶)
69 df-fn 6546 . 2 (𝑆 Fn (ℤ𝐶) ↔ (Fun 𝑆 ∧ dom 𝑆 = (ℤ𝐶)))
7058, 68, 69mpbir2an 708 1 𝑆 Fn (ℤ𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1538   = wceq 1540  wex 1780  wcel 2105  wrex 3069  Vcvv 3473  wss 3948  cop 4634  cmpt 5231   × cxp 5674  ccnv 5675  dom cdm 5676  ran crn 5677  cres 5678  Rel wrel 5681  Fun wfun 6537   Fn wfn 6538  1-1-ontowf1o 6542  cfv 6543  (class class class)co 7412  cmpo 7414  ωcom 7859  2nd c2nd 7978  reccrdg 8415  1c1 11117   + caddc 11119  cz 12565  cuz 12829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-n0 12480  df-z 12566  df-uz 12830
This theorem is referenced by:  uzrdg0i  13931  uzrdgsuci  13932  seqfn  13985
  Copyright terms: Public domain W3C validator