MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzrdgfni Structured version   Visualization version   GIF version

Theorem uzrdgfni 13999
Description: The recursive definition generator on upper integers is a function. See comment in om2uzrdg 13997. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 4-May-2015.)
Hypotheses
Ref Expression
om2uz.1 𝐶 ∈ ℤ
om2uz.2 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
uzrdg.1 𝐴 ∈ V
uzrdg.2 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)
uzrdg.3 𝑆 = ran 𝑅
Assertion
Ref Expression
uzrdgfni 𝑆 Fn (ℤ𝐶)
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝐶   𝑦,𝐺   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐺(𝑥)

Proof of Theorem uzrdgfni
Dummy variables 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzrdg.3 . . . . . . . . 9 𝑆 = ran 𝑅
21eleq2i 2833 . . . . . . . 8 (𝑧𝑆𝑧 ∈ ran 𝑅)
3 frfnom 8475 . . . . . . . . . 10 (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω) Fn ω
4 uzrdg.2 . . . . . . . . . . 11 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)
54fneq1i 6665 . . . . . . . . . 10 (𝑅 Fn ω ↔ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω) Fn ω)
63, 5mpbir 231 . . . . . . . . 9 𝑅 Fn ω
7 fvelrnb 6969 . . . . . . . . 9 (𝑅 Fn ω → (𝑧 ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = 𝑧))
86, 7ax-mp 5 . . . . . . . 8 (𝑧 ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = 𝑧)
92, 8bitri 275 . . . . . . 7 (𝑧𝑆 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = 𝑧)
10 om2uz.1 . . . . . . . . . . 11 𝐶 ∈ ℤ
11 om2uz.2 . . . . . . . . . . 11 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
12 uzrdg.1 . . . . . . . . . . 11 𝐴 ∈ V
1310, 11, 12, 4om2uzrdg 13997 . . . . . . . . . 10 (𝑤 ∈ ω → (𝑅𝑤) = ⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩)
1410, 11om2uzuzi 13990 . . . . . . . . . . 11 (𝑤 ∈ ω → (𝐺𝑤) ∈ (ℤ𝐶))
15 fvex 6919 . . . . . . . . . . 11 (2nd ‘(𝑅𝑤)) ∈ V
16 opelxpi 5722 . . . . . . . . . . 11 (((𝐺𝑤) ∈ (ℤ𝐶) ∧ (2nd ‘(𝑅𝑤)) ∈ V) → ⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ ∈ ((ℤ𝐶) × V))
1714, 15, 16sylancl 586 . . . . . . . . . 10 (𝑤 ∈ ω → ⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ ∈ ((ℤ𝐶) × V))
1813, 17eqeltrd 2841 . . . . . . . . 9 (𝑤 ∈ ω → (𝑅𝑤) ∈ ((ℤ𝐶) × V))
19 eleq1 2829 . . . . . . . . 9 ((𝑅𝑤) = 𝑧 → ((𝑅𝑤) ∈ ((ℤ𝐶) × V) ↔ 𝑧 ∈ ((ℤ𝐶) × V)))
2018, 19syl5ibcom 245 . . . . . . . 8 (𝑤 ∈ ω → ((𝑅𝑤) = 𝑧𝑧 ∈ ((ℤ𝐶) × V)))
2120rexlimiv 3148 . . . . . . 7 (∃𝑤 ∈ ω (𝑅𝑤) = 𝑧𝑧 ∈ ((ℤ𝐶) × V))
229, 21sylbi 217 . . . . . 6 (𝑧𝑆𝑧 ∈ ((ℤ𝐶) × V))
2322ssriv 3987 . . . . 5 𝑆 ⊆ ((ℤ𝐶) × V)
24 xpss 5701 . . . . 5 ((ℤ𝐶) × V) ⊆ (V × V)
2523, 24sstri 3993 . . . 4 𝑆 ⊆ (V × V)
26 df-rel 5692 . . . 4 (Rel 𝑆𝑆 ⊆ (V × V))
2725, 26mpbir 231 . . 3 Rel 𝑆
28 fvex 6919 . . . . . 6 (2nd ‘(𝑅‘(𝐺𝑣))) ∈ V
29 eqeq2 2749 . . . . . . . 8 (𝑤 = (2nd ‘(𝑅‘(𝐺𝑣))) → (𝑧 = 𝑤𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
3029imbi2d 340 . . . . . . 7 (𝑤 = (2nd ‘(𝑅‘(𝐺𝑣))) → ((⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = 𝑤) ↔ (⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = (2nd ‘(𝑅‘(𝐺𝑣))))))
3130albidv 1920 . . . . . 6 (𝑤 = (2nd ‘(𝑅‘(𝐺𝑣))) → (∀𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = 𝑤) ↔ ∀𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = (2nd ‘(𝑅‘(𝐺𝑣))))))
3228, 31spcev 3606 . . . . 5 (∀𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))) → ∃𝑤𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = 𝑤))
331eleq2i 2833 . . . . . . 7 (⟨𝑣, 𝑧⟩ ∈ 𝑆 ↔ ⟨𝑣, 𝑧⟩ ∈ ran 𝑅)
34 fvelrnb 6969 . . . . . . . 8 (𝑅 Fn ω → (⟨𝑣, 𝑧⟩ ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩))
356, 34ax-mp 5 . . . . . . 7 (⟨𝑣, 𝑧⟩ ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩)
3633, 35bitri 275 . . . . . 6 (⟨𝑣, 𝑧⟩ ∈ 𝑆 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩)
3713eqeq1d 2739 . . . . . . . . . . . 12 (𝑤 ∈ ω → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ ↔ ⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ = ⟨𝑣, 𝑧⟩))
38 fvex 6919 . . . . . . . . . . . . 13 (𝐺𝑤) ∈ V
3938, 15opth1 5480 . . . . . . . . . . . 12 (⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ = ⟨𝑣, 𝑧⟩ → (𝐺𝑤) = 𝑣)
4037, 39biimtrdi 253 . . . . . . . . . . 11 (𝑤 ∈ ω → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → (𝐺𝑤) = 𝑣))
4110, 11om2uzf1oi 13994 . . . . . . . . . . . 12 𝐺:ω–1-1-onto→(ℤ𝐶)
42 f1ocnvfv 7298 . . . . . . . . . . . 12 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ 𝑤 ∈ ω) → ((𝐺𝑤) = 𝑣 → (𝐺𝑣) = 𝑤))
4341, 42mpan 690 . . . . . . . . . . 11 (𝑤 ∈ ω → ((𝐺𝑤) = 𝑣 → (𝐺𝑣) = 𝑤))
4440, 43syld 47 . . . . . . . . . 10 (𝑤 ∈ ω → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → (𝐺𝑣) = 𝑤))
45 2fveq3 6911 . . . . . . . . . 10 ((𝐺𝑣) = 𝑤 → (2nd ‘(𝑅‘(𝐺𝑣))) = (2nd ‘(𝑅𝑤)))
4644, 45syl6 35 . . . . . . . . 9 (𝑤 ∈ ω → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → (2nd ‘(𝑅‘(𝐺𝑣))) = (2nd ‘(𝑅𝑤))))
4746imp 406 . . . . . . . 8 ((𝑤 ∈ ω ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩) → (2nd ‘(𝑅‘(𝐺𝑣))) = (2nd ‘(𝑅𝑤)))
48 vex 3484 . . . . . . . . . 10 𝑣 ∈ V
49 vex 3484 . . . . . . . . . 10 𝑧 ∈ V
5048, 49op2ndd 8025 . . . . . . . . 9 ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → (2nd ‘(𝑅𝑤)) = 𝑧)
5150adantl 481 . . . . . . . 8 ((𝑤 ∈ ω ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩) → (2nd ‘(𝑅𝑤)) = 𝑧)
5247, 51eqtr2d 2778 . . . . . . 7 ((𝑤 ∈ ω ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩) → 𝑧 = (2nd ‘(𝑅‘(𝐺𝑣))))
5352rexlimiva 3147 . . . . . 6 (∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩ → 𝑧 = (2nd ‘(𝑅‘(𝐺𝑣))))
5436, 53sylbi 217 . . . . 5 (⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = (2nd ‘(𝑅‘(𝐺𝑣))))
5532, 54mpg 1797 . . . 4 𝑤𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = 𝑤)
5655ax-gen 1795 . . 3 𝑣𝑤𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = 𝑤)
57 dffun5 6578 . . 3 (Fun 𝑆 ↔ (Rel 𝑆 ∧ ∀𝑣𝑤𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = 𝑤)))
5827, 56, 57mpbir2an 711 . 2 Fun 𝑆
59 dmss 5913 . . . . 5 (𝑆 ⊆ ((ℤ𝐶) × V) → dom 𝑆 ⊆ dom ((ℤ𝐶) × V))
6023, 59ax-mp 5 . . . 4 dom 𝑆 ⊆ dom ((ℤ𝐶) × V)
61 dmxpss 6191 . . . 4 dom ((ℤ𝐶) × V) ⊆ (ℤ𝐶)
6260, 61sstri 3993 . . 3 dom 𝑆 ⊆ (ℤ𝐶)
6310, 11, 12, 4uzrdglem 13998 . . . . . 6 (𝑣 ∈ (ℤ𝐶) → ⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ ran 𝑅)
6463, 1eleqtrrdi 2852 . . . . 5 (𝑣 ∈ (ℤ𝐶) → ⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ 𝑆)
6548, 28opeldm 5918 . . . . 5 (⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ 𝑆𝑣 ∈ dom 𝑆)
6664, 65syl 17 . . . 4 (𝑣 ∈ (ℤ𝐶) → 𝑣 ∈ dom 𝑆)
6766ssriv 3987 . . 3 (ℤ𝐶) ⊆ dom 𝑆
6862, 67eqssi 4000 . 2 dom 𝑆 = (ℤ𝐶)
69 df-fn 6564 . 2 (𝑆 Fn (ℤ𝐶) ↔ (Fun 𝑆 ∧ dom 𝑆 = (ℤ𝐶)))
7058, 68, 69mpbir2an 711 1 𝑆 Fn (ℤ𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2108  wrex 3070  Vcvv 3480  wss 3951  cop 4632  cmpt 5225   × cxp 5683  ccnv 5684  dom cdm 5685  ran crn 5686  cres 5687  Rel wrel 5690  Fun wfun 6555   Fn wfn 6556  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  cmpo 7433  ωcom 7887  2nd c2nd 8013  reccrdg 8449  1c1 11156   + caddc 11158  cz 12613  cuz 12878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879
This theorem is referenced by:  uzrdg0i  14000  uzrdgsuci  14001  seqfn  14054
  Copyright terms: Public domain W3C validator