| Step | Hyp | Ref
| Expression |
| 1 | | uzrdg.3 |
. . . . . . . . 9
⊢ 𝑆 = ran 𝑅 |
| 2 | 1 | eleq2i 2833 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝑆 ↔ 𝑧 ∈ ran 𝑅) |
| 3 | | frfnom 8475 |
. . . . . . . . . 10
⊢
(rec((𝑥 ∈ V,
𝑦 ∈ V ↦
〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) Fn
ω |
| 4 | | uzrdg.2 |
. . . . . . . . . . 11
⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) |
| 5 | 4 | fneq1i 6665 |
. . . . . . . . . 10
⊢ (𝑅 Fn ω ↔ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) Fn
ω) |
| 6 | 3, 5 | mpbir 231 |
. . . . . . . . 9
⊢ 𝑅 Fn ω |
| 7 | | fvelrnb 6969 |
. . . . . . . . 9
⊢ (𝑅 Fn ω → (𝑧 ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅‘𝑤) = 𝑧)) |
| 8 | 6, 7 | ax-mp 5 |
. . . . . . . 8
⊢ (𝑧 ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅‘𝑤) = 𝑧) |
| 9 | 2, 8 | bitri 275 |
. . . . . . 7
⊢ (𝑧 ∈ 𝑆 ↔ ∃𝑤 ∈ ω (𝑅‘𝑤) = 𝑧) |
| 10 | | om2uz.1 |
. . . . . . . . . . 11
⊢ 𝐶 ∈ ℤ |
| 11 | | om2uz.2 |
. . . . . . . . . . 11
⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) |
| 12 | | uzrdg.1 |
. . . . . . . . . . 11
⊢ 𝐴 ∈ V |
| 13 | 10, 11, 12, 4 | om2uzrdg 13997 |
. . . . . . . . . 10
⊢ (𝑤 ∈ ω → (𝑅‘𝑤) = 〈(𝐺‘𝑤), (2nd ‘(𝑅‘𝑤))〉) |
| 14 | 10, 11 | om2uzuzi 13990 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ ω → (𝐺‘𝑤) ∈ (ℤ≥‘𝐶)) |
| 15 | | fvex 6919 |
. . . . . . . . . . 11
⊢
(2nd ‘(𝑅‘𝑤)) ∈ V |
| 16 | | opelxpi 5722 |
. . . . . . . . . . 11
⊢ (((𝐺‘𝑤) ∈ (ℤ≥‘𝐶) ∧ (2nd
‘(𝑅‘𝑤)) ∈ V) → 〈(𝐺‘𝑤), (2nd ‘(𝑅‘𝑤))〉 ∈
((ℤ≥‘𝐶) × V)) |
| 17 | 14, 15, 16 | sylancl 586 |
. . . . . . . . . 10
⊢ (𝑤 ∈ ω →
〈(𝐺‘𝑤), (2nd ‘(𝑅‘𝑤))〉 ∈
((ℤ≥‘𝐶) × V)) |
| 18 | 13, 17 | eqeltrd 2841 |
. . . . . . . . 9
⊢ (𝑤 ∈ ω → (𝑅‘𝑤) ∈ ((ℤ≥‘𝐶) × V)) |
| 19 | | eleq1 2829 |
. . . . . . . . 9
⊢ ((𝑅‘𝑤) = 𝑧 → ((𝑅‘𝑤) ∈ ((ℤ≥‘𝐶) × V) ↔ 𝑧 ∈
((ℤ≥‘𝐶) × V))) |
| 20 | 18, 19 | syl5ibcom 245 |
. . . . . . . 8
⊢ (𝑤 ∈ ω → ((𝑅‘𝑤) = 𝑧 → 𝑧 ∈ ((ℤ≥‘𝐶) × V))) |
| 21 | 20 | rexlimiv 3148 |
. . . . . . 7
⊢
(∃𝑤 ∈
ω (𝑅‘𝑤) = 𝑧 → 𝑧 ∈ ((ℤ≥‘𝐶) × V)) |
| 22 | 9, 21 | sylbi 217 |
. . . . . 6
⊢ (𝑧 ∈ 𝑆 → 𝑧 ∈ ((ℤ≥‘𝐶) × V)) |
| 23 | 22 | ssriv 3987 |
. . . . 5
⊢ 𝑆 ⊆
((ℤ≥‘𝐶) × V) |
| 24 | | xpss 5701 |
. . . . 5
⊢
((ℤ≥‘𝐶) × V) ⊆ (V ×
V) |
| 25 | 23, 24 | sstri 3993 |
. . . 4
⊢ 𝑆 ⊆ (V ×
V) |
| 26 | | df-rel 5692 |
. . . 4
⊢ (Rel
𝑆 ↔ 𝑆 ⊆ (V × V)) |
| 27 | 25, 26 | mpbir 231 |
. . 3
⊢ Rel 𝑆 |
| 28 | | fvex 6919 |
. . . . . 6
⊢
(2nd ‘(𝑅‘(◡𝐺‘𝑣))) ∈ V |
| 29 | | eqeq2 2749 |
. . . . . . . 8
⊢ (𝑤 = (2nd ‘(𝑅‘(◡𝐺‘𝑣))) → (𝑧 = 𝑤 ↔ 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣))))) |
| 30 | 29 | imbi2d 340 |
. . . . . . 7
⊢ (𝑤 = (2nd ‘(𝑅‘(◡𝐺‘𝑣))) → ((〈𝑣, 𝑧〉 ∈ 𝑆 → 𝑧 = 𝑤) ↔ (〈𝑣, 𝑧〉 ∈ 𝑆 → 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣)))))) |
| 31 | 30 | albidv 1920 |
. . . . . 6
⊢ (𝑤 = (2nd ‘(𝑅‘(◡𝐺‘𝑣))) → (∀𝑧(〈𝑣, 𝑧〉 ∈ 𝑆 → 𝑧 = 𝑤) ↔ ∀𝑧(〈𝑣, 𝑧〉 ∈ 𝑆 → 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣)))))) |
| 32 | 28, 31 | spcev 3606 |
. . . . 5
⊢
(∀𝑧(〈𝑣, 𝑧〉 ∈ 𝑆 → 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣)))) → ∃𝑤∀𝑧(〈𝑣, 𝑧〉 ∈ 𝑆 → 𝑧 = 𝑤)) |
| 33 | 1 | eleq2i 2833 |
. . . . . . 7
⊢
(〈𝑣, 𝑧〉 ∈ 𝑆 ↔ 〈𝑣, 𝑧〉 ∈ ran 𝑅) |
| 34 | | fvelrnb 6969 |
. . . . . . . 8
⊢ (𝑅 Fn ω → (〈𝑣, 𝑧〉 ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅‘𝑤) = 〈𝑣, 𝑧〉)) |
| 35 | 6, 34 | ax-mp 5 |
. . . . . . 7
⊢
(〈𝑣, 𝑧〉 ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅‘𝑤) = 〈𝑣, 𝑧〉) |
| 36 | 33, 35 | bitri 275 |
. . . . . 6
⊢
(〈𝑣, 𝑧〉 ∈ 𝑆 ↔ ∃𝑤 ∈ ω (𝑅‘𝑤) = 〈𝑣, 𝑧〉) |
| 37 | 13 | eqeq1d 2739 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ ω → ((𝑅‘𝑤) = 〈𝑣, 𝑧〉 ↔ 〈(𝐺‘𝑤), (2nd ‘(𝑅‘𝑤))〉 = 〈𝑣, 𝑧〉)) |
| 38 | | fvex 6919 |
. . . . . . . . . . . . 13
⊢ (𝐺‘𝑤) ∈ V |
| 39 | 38, 15 | opth1 5480 |
. . . . . . . . . . . 12
⊢
(〈(𝐺‘𝑤), (2nd ‘(𝑅‘𝑤))〉 = 〈𝑣, 𝑧〉 → (𝐺‘𝑤) = 𝑣) |
| 40 | 37, 39 | biimtrdi 253 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ ω → ((𝑅‘𝑤) = 〈𝑣, 𝑧〉 → (𝐺‘𝑤) = 𝑣)) |
| 41 | 10, 11 | om2uzf1oi 13994 |
. . . . . . . . . . . 12
⊢ 𝐺:ω–1-1-onto→(ℤ≥‘𝐶) |
| 42 | | f1ocnvfv 7298 |
. . . . . . . . . . . 12
⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘𝐶) ∧ 𝑤 ∈ ω) → ((𝐺‘𝑤) = 𝑣 → (◡𝐺‘𝑣) = 𝑤)) |
| 43 | 41, 42 | mpan 690 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ ω → ((𝐺‘𝑤) = 𝑣 → (◡𝐺‘𝑣) = 𝑤)) |
| 44 | 40, 43 | syld 47 |
. . . . . . . . . 10
⊢ (𝑤 ∈ ω → ((𝑅‘𝑤) = 〈𝑣, 𝑧〉 → (◡𝐺‘𝑣) = 𝑤)) |
| 45 | | 2fveq3 6911 |
. . . . . . . . . 10
⊢ ((◡𝐺‘𝑣) = 𝑤 → (2nd ‘(𝑅‘(◡𝐺‘𝑣))) = (2nd ‘(𝑅‘𝑤))) |
| 46 | 44, 45 | syl6 35 |
. . . . . . . . 9
⊢ (𝑤 ∈ ω → ((𝑅‘𝑤) = 〈𝑣, 𝑧〉 → (2nd ‘(𝑅‘(◡𝐺‘𝑣))) = (2nd ‘(𝑅‘𝑤)))) |
| 47 | 46 | imp 406 |
. . . . . . . 8
⊢ ((𝑤 ∈ ω ∧ (𝑅‘𝑤) = 〈𝑣, 𝑧〉) → (2nd ‘(𝑅‘(◡𝐺‘𝑣))) = (2nd ‘(𝑅‘𝑤))) |
| 48 | | vex 3484 |
. . . . . . . . . 10
⊢ 𝑣 ∈ V |
| 49 | | vex 3484 |
. . . . . . . . . 10
⊢ 𝑧 ∈ V |
| 50 | 48, 49 | op2ndd 8025 |
. . . . . . . . 9
⊢ ((𝑅‘𝑤) = 〈𝑣, 𝑧〉 → (2nd ‘(𝑅‘𝑤)) = 𝑧) |
| 51 | 50 | adantl 481 |
. . . . . . . 8
⊢ ((𝑤 ∈ ω ∧ (𝑅‘𝑤) = 〈𝑣, 𝑧〉) → (2nd ‘(𝑅‘𝑤)) = 𝑧) |
| 52 | 47, 51 | eqtr2d 2778 |
. . . . . . 7
⊢ ((𝑤 ∈ ω ∧ (𝑅‘𝑤) = 〈𝑣, 𝑧〉) → 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣)))) |
| 53 | 52 | rexlimiva 3147 |
. . . . . 6
⊢
(∃𝑤 ∈
ω (𝑅‘𝑤) = 〈𝑣, 𝑧〉 → 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣)))) |
| 54 | 36, 53 | sylbi 217 |
. . . . 5
⊢
(〈𝑣, 𝑧〉 ∈ 𝑆 → 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣)))) |
| 55 | 32, 54 | mpg 1797 |
. . . 4
⊢
∃𝑤∀𝑧(〈𝑣, 𝑧〉 ∈ 𝑆 → 𝑧 = 𝑤) |
| 56 | 55 | ax-gen 1795 |
. . 3
⊢
∀𝑣∃𝑤∀𝑧(〈𝑣, 𝑧〉 ∈ 𝑆 → 𝑧 = 𝑤) |
| 57 | | dffun5 6578 |
. . 3
⊢ (Fun
𝑆 ↔ (Rel 𝑆 ∧ ∀𝑣∃𝑤∀𝑧(〈𝑣, 𝑧〉 ∈ 𝑆 → 𝑧 = 𝑤))) |
| 58 | 27, 56, 57 | mpbir2an 711 |
. 2
⊢ Fun 𝑆 |
| 59 | | dmss 5913 |
. . . . 5
⊢ (𝑆 ⊆
((ℤ≥‘𝐶) × V) → dom 𝑆 ⊆ dom
((ℤ≥‘𝐶) × V)) |
| 60 | 23, 59 | ax-mp 5 |
. . . 4
⊢ dom 𝑆 ⊆ dom
((ℤ≥‘𝐶) × V) |
| 61 | | dmxpss 6191 |
. . . 4
⊢ dom
((ℤ≥‘𝐶) × V) ⊆
(ℤ≥‘𝐶) |
| 62 | 60, 61 | sstri 3993 |
. . 3
⊢ dom 𝑆 ⊆
(ℤ≥‘𝐶) |
| 63 | 10, 11, 12, 4 | uzrdglem 13998 |
. . . . . 6
⊢ (𝑣 ∈
(ℤ≥‘𝐶) → 〈𝑣, (2nd ‘(𝑅‘(◡𝐺‘𝑣)))〉 ∈ ran 𝑅) |
| 64 | 63, 1 | eleqtrrdi 2852 |
. . . . 5
⊢ (𝑣 ∈
(ℤ≥‘𝐶) → 〈𝑣, (2nd ‘(𝑅‘(◡𝐺‘𝑣)))〉 ∈ 𝑆) |
| 65 | 48, 28 | opeldm 5918 |
. . . . 5
⊢
(〈𝑣,
(2nd ‘(𝑅‘(◡𝐺‘𝑣)))〉 ∈ 𝑆 → 𝑣 ∈ dom 𝑆) |
| 66 | 64, 65 | syl 17 |
. . . 4
⊢ (𝑣 ∈
(ℤ≥‘𝐶) → 𝑣 ∈ dom 𝑆) |
| 67 | 66 | ssriv 3987 |
. . 3
⊢
(ℤ≥‘𝐶) ⊆ dom 𝑆 |
| 68 | 62, 67 | eqssi 4000 |
. 2
⊢ dom 𝑆 =
(ℤ≥‘𝐶) |
| 69 | | df-fn 6564 |
. 2
⊢ (𝑆 Fn
(ℤ≥‘𝐶) ↔ (Fun 𝑆 ∧ dom 𝑆 = (ℤ≥‘𝐶))) |
| 70 | 58, 68, 69 | mpbir2an 711 |
1
⊢ 𝑆 Fn
(ℤ≥‘𝐶) |