MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noseqrdgfn Structured version   Visualization version   GIF version

Theorem noseqrdgfn 28200
Description: The recursive definition generator on surreal sequences is a function. (Contributed by Scott Fenton, 18-Apr-2025.)
Hypotheses
Ref Expression
om2noseq.1 (𝜑𝐶 No )
om2noseq.2 (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
om2noseq.3 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))
noseqrdg.1 (𝜑𝐴𝑉)
noseqrdg.2 (𝜑𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω))
noseqrdg.3 (𝜑𝑆 = ran 𝑅)
Assertion
Ref Expression
noseqrdgfn (𝜑𝑆 Fn 𝑍)
Distinct variable groups:   𝑥,𝐶   𝑥,𝐹,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐶(𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem noseqrdgfn
Dummy variables 𝑤 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noseqrdg.3 . . . . . . . 8 (𝜑𝑆 = ran 𝑅)
21eleq2d 2814 . . . . . . 7 (𝜑 → (𝑧𝑆𝑧 ∈ ran 𝑅))
3 frfnom 8403 . . . . . . . . 9 (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω) Fn ω
4 noseqrdg.2 . . . . . . . . . 10 (𝜑𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω))
54fneq1d 6611 . . . . . . . . 9 (𝜑 → (𝑅 Fn ω ↔ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω) Fn ω))
63, 5mpbiri 258 . . . . . . . 8 (𝜑𝑅 Fn ω)
7 fvelrnb 6921 . . . . . . . 8 (𝑅 Fn ω → (𝑧 ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = 𝑧))
86, 7syl 17 . . . . . . 7 (𝜑 → (𝑧 ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = 𝑧))
92, 8bitrd 279 . . . . . 6 (𝜑 → (𝑧𝑆 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = 𝑧))
10 om2noseq.1 . . . . . . . . . 10 (𝜑𝐶 No )
11 om2noseq.2 . . . . . . . . . 10 (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
12 om2noseq.3 . . . . . . . . . 10 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))
13 noseqrdg.1 . . . . . . . . . 10 (𝜑𝐴𝑉)
1410, 11, 12, 13, 4om2noseqrdg 28198 . . . . . . . . 9 ((𝜑𝑤 ∈ ω) → (𝑅𝑤) = ⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩)
1510, 11, 12om2noseqfo 28192 . . . . . . . . . . . 12 (𝜑𝐺:ω–onto𝑍)
16 fof 6772 . . . . . . . . . . . 12 (𝐺:ω–onto𝑍𝐺:ω⟶𝑍)
1715, 16syl 17 . . . . . . . . . . 11 (𝜑𝐺:ω⟶𝑍)
1817ffvelcdmda 7056 . . . . . . . . . 10 ((𝜑𝑤 ∈ ω) → (𝐺𝑤) ∈ 𝑍)
19 fvex 6871 . . . . . . . . . 10 (2nd ‘(𝑅𝑤)) ∈ V
20 opelxpi 5675 . . . . . . . . . 10 (((𝐺𝑤) ∈ 𝑍 ∧ (2nd ‘(𝑅𝑤)) ∈ V) → ⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ ∈ (𝑍 × V))
2118, 19, 20sylancl 586 . . . . . . . . 9 ((𝜑𝑤 ∈ ω) → ⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ ∈ (𝑍 × V))
2214, 21eqeltrd 2828 . . . . . . . 8 ((𝜑𝑤 ∈ ω) → (𝑅𝑤) ∈ (𝑍 × V))
23 eleq1 2816 . . . . . . . 8 ((𝑅𝑤) = 𝑧 → ((𝑅𝑤) ∈ (𝑍 × V) ↔ 𝑧 ∈ (𝑍 × V)))
2422, 23syl5ibcom 245 . . . . . . 7 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = 𝑧𝑧 ∈ (𝑍 × V)))
2524rexlimdva 3134 . . . . . 6 (𝜑 → (∃𝑤 ∈ ω (𝑅𝑤) = 𝑧𝑧 ∈ (𝑍 × V)))
269, 25sylbid 240 . . . . 5 (𝜑 → (𝑧𝑆𝑧 ∈ (𝑍 × V)))
2726ssrdv 3952 . . . 4 (𝜑𝑆 ⊆ (𝑍 × V))
28 relxp 5656 . . . 4 Rel (𝑍 × V)
29 relss 5744 . . . 4 (𝑆 ⊆ (𝑍 × V) → (Rel (𝑍 × V) → Rel 𝑆))
3027, 28, 29mpisyl 21 . . 3 (𝜑 → Rel 𝑆)
311eleq2d 2814 . . . . . . . 8 (𝜑 → (⟨𝑣, 𝑧⟩ ∈ 𝑆 ↔ ⟨𝑣, 𝑧⟩ ∈ ran 𝑅))
32 fvelrnb 6921 . . . . . . . . 9 (𝑅 Fn ω → (⟨𝑣, 𝑧⟩ ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩))
336, 32syl 17 . . . . . . . 8 (𝜑 → (⟨𝑣, 𝑧⟩ ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩))
3431, 33bitrd 279 . . . . . . 7 (𝜑 → (⟨𝑣, 𝑧⟩ ∈ 𝑆 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩))
3514eqeq1d 2731 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ ↔ ⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ = ⟨𝑣, 𝑧⟩))
3635biimpd 229 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → ⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ = ⟨𝑣, 𝑧⟩))
3736impr 454 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑤 ∈ ω ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩)) → ⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ = ⟨𝑣, 𝑧⟩)
38 fvex 6871 . . . . . . . . . . . . . 14 (𝐺𝑤) ∈ V
3938, 19opth1 5435 . . . . . . . . . . . . 13 (⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ = ⟨𝑣, 𝑧⟩ → (𝐺𝑤) = 𝑣)
4037, 39syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑤 ∈ ω ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩)) → (𝐺𝑤) = 𝑣)
4110, 11, 12om2noseqf1o 28195 . . . . . . . . . . . . . 14 (𝜑𝐺:ω–1-1-onto𝑍)
42 f1ocnvfv 7253 . . . . . . . . . . . . . 14 ((𝐺:ω–1-1-onto𝑍𝑤 ∈ ω) → ((𝐺𝑤) = 𝑣 → (𝐺𝑣) = 𝑤))
4341, 42sylan 580 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ ω) → ((𝐺𝑤) = 𝑣 → (𝐺𝑣) = 𝑤))
4443adantrr 717 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑤 ∈ ω ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩)) → ((𝐺𝑤) = 𝑣 → (𝐺𝑣) = 𝑤))
4540, 44mpd 15 . . . . . . . . . . 11 ((𝜑 ∧ (𝑤 ∈ ω ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩)) → (𝐺𝑣) = 𝑤)
4645fveq2d 6862 . . . . . . . . . 10 ((𝜑 ∧ (𝑤 ∈ ω ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩)) → (𝑅‘(𝐺𝑣)) = (𝑅𝑤))
4746fveq2d 6862 . . . . . . . . 9 ((𝜑 ∧ (𝑤 ∈ ω ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩)) → (2nd ‘(𝑅‘(𝐺𝑣))) = (2nd ‘(𝑅𝑤)))
48 vex 3451 . . . . . . . . . . 11 𝑣 ∈ V
49 vex 3451 . . . . . . . . . . 11 𝑧 ∈ V
5048, 49op2ndd 7979 . . . . . . . . . 10 ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → (2nd ‘(𝑅𝑤)) = 𝑧)
5150ad2antll 729 . . . . . . . . 9 ((𝜑 ∧ (𝑤 ∈ ω ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩)) → (2nd ‘(𝑅𝑤)) = 𝑧)
5247, 51eqtr2d 2765 . . . . . . . 8 ((𝜑 ∧ (𝑤 ∈ ω ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩)) → 𝑧 = (2nd ‘(𝑅‘(𝐺𝑣))))
5352rexlimdvaa 3135 . . . . . . 7 (𝜑 → (∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩ → 𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
5434, 53sylbid 240 . . . . . 6 (𝜑 → (⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
5554alrimiv 1927 . . . . 5 (𝜑 → ∀𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
56 fvex 6871 . . . . . 6 (2nd ‘(𝑅‘(𝐺𝑣))) ∈ V
57 eqeq2 2741 . . . . . . . 8 (𝑤 = (2nd ‘(𝑅‘(𝐺𝑣))) → (𝑧 = 𝑤𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
5857imbi2d 340 . . . . . . 7 (𝑤 = (2nd ‘(𝑅‘(𝐺𝑣))) → ((⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = 𝑤) ↔ (⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = (2nd ‘(𝑅‘(𝐺𝑣))))))
5958albidv 1920 . . . . . 6 (𝑤 = (2nd ‘(𝑅‘(𝐺𝑣))) → (∀𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = 𝑤) ↔ ∀𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = (2nd ‘(𝑅‘(𝐺𝑣))))))
6056, 59spcev 3572 . . . . 5 (∀𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))) → ∃𝑤𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = 𝑤))
6155, 60syl 17 . . . 4 (𝜑 → ∃𝑤𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = 𝑤))
6261alrimiv 1927 . . 3 (𝜑 → ∀𝑣𝑤𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = 𝑤))
63 dffun5 6528 . . 3 (Fun 𝑆 ↔ (Rel 𝑆 ∧ ∀𝑣𝑤𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = 𝑤)))
6430, 62, 63sylanbrc 583 . 2 (𝜑 → Fun 𝑆)
65 dmss 5866 . . . . 5 (𝑆 ⊆ (𝑍 × V) → dom 𝑆 ⊆ dom (𝑍 × V))
6627, 65syl 17 . . . 4 (𝜑 → dom 𝑆 ⊆ dom (𝑍 × V))
67 dmxpss 6144 . . . 4 dom (𝑍 × V) ⊆ 𝑍
6866, 67sstrdi 3959 . . 3 (𝜑 → dom 𝑆𝑍)
6910, 11, 12, 13, 4noseqrdglem 28199 . . . . 5 ((𝜑𝑣𝑍) → ⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ ran 𝑅)
701adantr 480 . . . . 5 ((𝜑𝑣𝑍) → 𝑆 = ran 𝑅)
7169, 70eleqtrrd 2831 . . . 4 ((𝜑𝑣𝑍) → ⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ 𝑆)
7248, 56opeldm 5871 . . . 4 (⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ 𝑆𝑣 ∈ dom 𝑆)
7371, 72syl 17 . . 3 ((𝜑𝑣𝑍) → 𝑣 ∈ dom 𝑆)
7468, 73eqelssd 3968 . 2 (𝜑 → dom 𝑆 = 𝑍)
75 df-fn 6514 . 2 (𝑆 Fn 𝑍 ↔ (Fun 𝑆 ∧ dom 𝑆 = 𝑍))
7664, 74, 75sylanbrc 583 1 (𝜑𝑆 Fn 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  wrex 3053  Vcvv 3447  wss 3914  cop 4595  cmpt 5188   × cxp 5636  ccnv 5637  dom cdm 5638  ran crn 5639  cres 5640  cima 5641  Rel wrel 5643  Fun wfun 6505   Fn wfn 6506  wf 6507  ontowfo 6509  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  cmpo 7389  ωcom 7842  2nd c2nd 7967  reccrdg 8377   No csur 27551   1s c1s 27735   +s cadds 27866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-nadd 8630  df-no 27554  df-slt 27555  df-bday 27556  df-sle 27657  df-sslt 27693  df-scut 27695  df-0s 27736  df-1s 27737  df-made 27755  df-old 27756  df-left 27758  df-right 27759  df-norec2 27856  df-adds 27867
This theorem is referenced by:  noseqrdg0  28201  noseqrdgsuc  28202  seqsfn  28203
  Copyright terms: Public domain W3C validator