MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noseqrdgfn Structured version   Visualization version   GIF version

Theorem noseqrdgfn 28330
Description: The recursive definition generator on surreal sequences is a function. (Contributed by Scott Fenton, 18-Apr-2025.)
Hypotheses
Ref Expression
om2noseq.1 (𝜑𝐶 No )
om2noseq.2 (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
om2noseq.3 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))
noseqrdg.1 (𝜑𝐴𝑉)
noseqrdg.2 (𝜑𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω))
noseqrdg.3 (𝜑𝑆 = ran 𝑅)
Assertion
Ref Expression
noseqrdgfn (𝜑𝑆 Fn 𝑍)
Distinct variable groups:   𝑥,𝐶   𝑥,𝐹,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐶(𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem noseqrdgfn
Dummy variables 𝑤 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noseqrdg.3 . . . . . . . 8 (𝜑𝑆 = ran 𝑅)
21eleq2d 2830 . . . . . . 7 (𝜑 → (𝑧𝑆𝑧 ∈ ran 𝑅))
3 frfnom 8491 . . . . . . . . 9 (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω) Fn ω
4 noseqrdg.2 . . . . . . . . . 10 (𝜑𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω))
54fneq1d 6672 . . . . . . . . 9 (𝜑 → (𝑅 Fn ω ↔ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω) Fn ω))
63, 5mpbiri 258 . . . . . . . 8 (𝜑𝑅 Fn ω)
7 fvelrnb 6982 . . . . . . . 8 (𝑅 Fn ω → (𝑧 ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = 𝑧))
86, 7syl 17 . . . . . . 7 (𝜑 → (𝑧 ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = 𝑧))
92, 8bitrd 279 . . . . . 6 (𝜑 → (𝑧𝑆 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = 𝑧))
10 om2noseq.1 . . . . . . . . . 10 (𝜑𝐶 No )
11 om2noseq.2 . . . . . . . . . 10 (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
12 om2noseq.3 . . . . . . . . . 10 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))
13 noseqrdg.1 . . . . . . . . . 10 (𝜑𝐴𝑉)
1410, 11, 12, 13, 4om2noseqrdg 28328 . . . . . . . . 9 ((𝜑𝑤 ∈ ω) → (𝑅𝑤) = ⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩)
1510, 11, 12om2noseqfo 28322 . . . . . . . . . . . 12 (𝜑𝐺:ω–onto𝑍)
16 fof 6834 . . . . . . . . . . . 12 (𝐺:ω–onto𝑍𝐺:ω⟶𝑍)
1715, 16syl 17 . . . . . . . . . . 11 (𝜑𝐺:ω⟶𝑍)
1817ffvelcdmda 7118 . . . . . . . . . 10 ((𝜑𝑤 ∈ ω) → (𝐺𝑤) ∈ 𝑍)
19 fvex 6933 . . . . . . . . . 10 (2nd ‘(𝑅𝑤)) ∈ V
20 opelxpi 5737 . . . . . . . . . 10 (((𝐺𝑤) ∈ 𝑍 ∧ (2nd ‘(𝑅𝑤)) ∈ V) → ⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ ∈ (𝑍 × V))
2118, 19, 20sylancl 585 . . . . . . . . 9 ((𝜑𝑤 ∈ ω) → ⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ ∈ (𝑍 × V))
2214, 21eqeltrd 2844 . . . . . . . 8 ((𝜑𝑤 ∈ ω) → (𝑅𝑤) ∈ (𝑍 × V))
23 eleq1 2832 . . . . . . . 8 ((𝑅𝑤) = 𝑧 → ((𝑅𝑤) ∈ (𝑍 × V) ↔ 𝑧 ∈ (𝑍 × V)))
2422, 23syl5ibcom 245 . . . . . . 7 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = 𝑧𝑧 ∈ (𝑍 × V)))
2524rexlimdva 3161 . . . . . 6 (𝜑 → (∃𝑤 ∈ ω (𝑅𝑤) = 𝑧𝑧 ∈ (𝑍 × V)))
269, 25sylbid 240 . . . . 5 (𝜑 → (𝑧𝑆𝑧 ∈ (𝑍 × V)))
2726ssrdv 4014 . . . 4 (𝜑𝑆 ⊆ (𝑍 × V))
28 relxp 5718 . . . 4 Rel (𝑍 × V)
29 relss 5805 . . . 4 (𝑆 ⊆ (𝑍 × V) → (Rel (𝑍 × V) → Rel 𝑆))
3027, 28, 29mpisyl 21 . . 3 (𝜑 → Rel 𝑆)
311eleq2d 2830 . . . . . . . 8 (𝜑 → (⟨𝑣, 𝑧⟩ ∈ 𝑆 ↔ ⟨𝑣, 𝑧⟩ ∈ ran 𝑅))
32 fvelrnb 6982 . . . . . . . . 9 (𝑅 Fn ω → (⟨𝑣, 𝑧⟩ ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩))
336, 32syl 17 . . . . . . . 8 (𝜑 → (⟨𝑣, 𝑧⟩ ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩))
3431, 33bitrd 279 . . . . . . 7 (𝜑 → (⟨𝑣, 𝑧⟩ ∈ 𝑆 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩))
3514eqeq1d 2742 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ ↔ ⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ = ⟨𝑣, 𝑧⟩))
3635biimpd 229 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → ⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ = ⟨𝑣, 𝑧⟩))
3736impr 454 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑤 ∈ ω ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩)) → ⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ = ⟨𝑣, 𝑧⟩)
38 fvex 6933 . . . . . . . . . . . . . 14 (𝐺𝑤) ∈ V
3938, 19opth1 5495 . . . . . . . . . . . . 13 (⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ = ⟨𝑣, 𝑧⟩ → (𝐺𝑤) = 𝑣)
4037, 39syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑤 ∈ ω ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩)) → (𝐺𝑤) = 𝑣)
4110, 11, 12om2noseqf1o 28325 . . . . . . . . . . . . . 14 (𝜑𝐺:ω–1-1-onto𝑍)
42 f1ocnvfv 7314 . . . . . . . . . . . . . 14 ((𝐺:ω–1-1-onto𝑍𝑤 ∈ ω) → ((𝐺𝑤) = 𝑣 → (𝐺𝑣) = 𝑤))
4341, 42sylan 579 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ ω) → ((𝐺𝑤) = 𝑣 → (𝐺𝑣) = 𝑤))
4443adantrr 716 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑤 ∈ ω ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩)) → ((𝐺𝑤) = 𝑣 → (𝐺𝑣) = 𝑤))
4540, 44mpd 15 . . . . . . . . . . 11 ((𝜑 ∧ (𝑤 ∈ ω ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩)) → (𝐺𝑣) = 𝑤)
4645fveq2d 6924 . . . . . . . . . 10 ((𝜑 ∧ (𝑤 ∈ ω ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩)) → (𝑅‘(𝐺𝑣)) = (𝑅𝑤))
4746fveq2d 6924 . . . . . . . . 9 ((𝜑 ∧ (𝑤 ∈ ω ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩)) → (2nd ‘(𝑅‘(𝐺𝑣))) = (2nd ‘(𝑅𝑤)))
48 vex 3492 . . . . . . . . . . 11 𝑣 ∈ V
49 vex 3492 . . . . . . . . . . 11 𝑧 ∈ V
5048, 49op2ndd 8041 . . . . . . . . . 10 ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → (2nd ‘(𝑅𝑤)) = 𝑧)
5150ad2antll 728 . . . . . . . . 9 ((𝜑 ∧ (𝑤 ∈ ω ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩)) → (2nd ‘(𝑅𝑤)) = 𝑧)
5247, 51eqtr2d 2781 . . . . . . . 8 ((𝜑 ∧ (𝑤 ∈ ω ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩)) → 𝑧 = (2nd ‘(𝑅‘(𝐺𝑣))))
5352rexlimdvaa 3162 . . . . . . 7 (𝜑 → (∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩ → 𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
5434, 53sylbid 240 . . . . . 6 (𝜑 → (⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
5554alrimiv 1926 . . . . 5 (𝜑 → ∀𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
56 fvex 6933 . . . . . 6 (2nd ‘(𝑅‘(𝐺𝑣))) ∈ V
57 eqeq2 2752 . . . . . . . 8 (𝑤 = (2nd ‘(𝑅‘(𝐺𝑣))) → (𝑧 = 𝑤𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
5857imbi2d 340 . . . . . . 7 (𝑤 = (2nd ‘(𝑅‘(𝐺𝑣))) → ((⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = 𝑤) ↔ (⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = (2nd ‘(𝑅‘(𝐺𝑣))))))
5958albidv 1919 . . . . . 6 (𝑤 = (2nd ‘(𝑅‘(𝐺𝑣))) → (∀𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = 𝑤) ↔ ∀𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = (2nd ‘(𝑅‘(𝐺𝑣))))))
6056, 59spcev 3619 . . . . 5 (∀𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))) → ∃𝑤𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = 𝑤))
6155, 60syl 17 . . . 4 (𝜑 → ∃𝑤𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = 𝑤))
6261alrimiv 1926 . . 3 (𝜑 → ∀𝑣𝑤𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = 𝑤))
63 dffun5 6590 . . 3 (Fun 𝑆 ↔ (Rel 𝑆 ∧ ∀𝑣𝑤𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑆𝑧 = 𝑤)))
6430, 62, 63sylanbrc 582 . 2 (𝜑 → Fun 𝑆)
65 dmss 5927 . . . . 5 (𝑆 ⊆ (𝑍 × V) → dom 𝑆 ⊆ dom (𝑍 × V))
6627, 65syl 17 . . . 4 (𝜑 → dom 𝑆 ⊆ dom (𝑍 × V))
67 dmxpss 6202 . . . 4 dom (𝑍 × V) ⊆ 𝑍
6866, 67sstrdi 4021 . . 3 (𝜑 → dom 𝑆𝑍)
6910, 11, 12, 13, 4noseqrdglem 28329 . . . . 5 ((𝜑𝑣𝑍) → ⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ ran 𝑅)
701adantr 480 . . . . 5 ((𝜑𝑣𝑍) → 𝑆 = ran 𝑅)
7169, 70eleqtrrd 2847 . . . 4 ((𝜑𝑣𝑍) → ⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ 𝑆)
7248, 56opeldm 5932 . . . 4 (⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ 𝑆𝑣 ∈ dom 𝑆)
7371, 72syl 17 . . 3 ((𝜑𝑣𝑍) → 𝑣 ∈ dom 𝑆)
7468, 73eqelssd 4030 . 2 (𝜑 → dom 𝑆 = 𝑍)
75 df-fn 6576 . 2 (𝑆 Fn 𝑍 ↔ (Fun 𝑆 ∧ dom 𝑆 = 𝑍))
7664, 74, 75sylanbrc 582 1 (𝜑𝑆 Fn 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wex 1777  wcel 2108  wrex 3076  Vcvv 3488  wss 3976  cop 4654  cmpt 5249   × cxp 5698  ccnv 5699  dom cdm 5700  ran crn 5701  cres 5702  cima 5703  Rel wrel 5705  Fun wfun 6567   Fn wfn 6568  wf 6569  ontowfo 6571  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  cmpo 7450  ωcom 7903  2nd c2nd 8029  reccrdg 8465   No csur 27702   1s c1s 27886   +s cadds 28010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-nadd 8722  df-no 27705  df-slt 27706  df-bday 27707  df-sle 27808  df-sslt 27844  df-scut 27846  df-0s 27887  df-1s 27888  df-made 27904  df-old 27905  df-left 27907  df-right 27908  df-norec2 28000  df-adds 28011
This theorem is referenced by:  noseqrdg0  28331  noseqrdgsuc  28332  seqsfn  28333
  Copyright terms: Public domain W3C validator