![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hilnormi | Structured version Visualization version GIF version |
Description: Hilbert space norm in terms of vector space norm. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hilnorm.5 | ⊢ ℋ = (BaseSet‘𝑈) |
hilnorm.2 | ⊢ ·ih = (·𝑖OLD‘𝑈) |
hilnorm.9 | ⊢ 𝑈 ∈ NrmCVec |
Ref | Expression |
---|---|
hilnormi | ⊢ normℎ = (normCV‘𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hilnorm.9 | . . . 4 ⊢ 𝑈 ∈ NrmCVec | |
2 | hilnorm.5 | . . . . 5 ⊢ ℋ = (BaseSet‘𝑈) | |
3 | eqid 2773 | . . . . 5 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
4 | hilnorm.2 | . . . . 5 ⊢ ·ih = (·𝑖OLD‘𝑈) | |
5 | 2, 3, 4 | ipnm 28281 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℋ) → ((normCV‘𝑈)‘𝑥) = (√‘(𝑥 ·ih 𝑥))) |
6 | 1, 5 | mpan 678 | . . 3 ⊢ (𝑥 ∈ ℋ → ((normCV‘𝑈)‘𝑥) = (√‘(𝑥 ·ih 𝑥))) |
7 | 6 | mpteq2ia 5015 | . 2 ⊢ (𝑥 ∈ ℋ ↦ ((normCV‘𝑈)‘𝑥)) = (𝑥 ∈ ℋ ↦ (√‘(𝑥 ·ih 𝑥))) |
8 | 2, 3 | nvf 28230 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → (normCV‘𝑈): ℋ⟶ℝ) |
9 | 8 | feqmptd 6561 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (normCV‘𝑈) = (𝑥 ∈ ℋ ↦ ((normCV‘𝑈)‘𝑥))) |
10 | 1, 9 | ax-mp 5 | . 2 ⊢ (normCV‘𝑈) = (𝑥 ∈ ℋ ↦ ((normCV‘𝑈)‘𝑥)) |
11 | dfhnorm2 28694 | . 2 ⊢ normℎ = (𝑥 ∈ ℋ ↦ (√‘(𝑥 ·ih 𝑥))) | |
12 | 7, 10, 11 | 3eqtr4ri 2808 | 1 ⊢ normℎ = (normCV‘𝑈) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1508 ∈ wcel 2051 ↦ cmpt 5005 ‘cfv 6186 (class class class)co 6975 ℝcr 10333 √csqrt 14452 NrmCVeccnv 28154 BaseSetcba 28156 normCVcnmcv 28160 ·𝑖OLDcdip 28270 ℋchba 28491 ·ih csp 28494 normℎcno 28495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-rep 5046 ax-sep 5057 ax-nul 5064 ax-pow 5116 ax-pr 5183 ax-un 7278 ax-inf2 8897 ax-cnex 10390 ax-resscn 10391 ax-1cn 10392 ax-icn 10393 ax-addcl 10394 ax-addrcl 10395 ax-mulcl 10396 ax-mulrcl 10397 ax-mulcom 10398 ax-addass 10399 ax-mulass 10400 ax-distr 10401 ax-i2m1 10402 ax-1ne0 10403 ax-1rid 10404 ax-rnegex 10405 ax-rrecex 10406 ax-cnre 10407 ax-pre-lttri 10408 ax-pre-lttrn 10409 ax-pre-ltadd 10410 ax-pre-mulgt0 10411 ax-pre-sup 10412 ax-hfi 28651 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-fal 1521 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-nel 3069 df-ral 3088 df-rex 3089 df-reu 3090 df-rmo 3091 df-rab 3092 df-v 3412 df-sbc 3677 df-csb 3782 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-pss 3840 df-nul 4174 df-if 4346 df-pw 4419 df-sn 4437 df-pr 4439 df-tp 4441 df-op 4443 df-uni 4710 df-int 4747 df-iun 4791 df-br 4927 df-opab 4989 df-mpt 5006 df-tr 5028 df-id 5309 df-eprel 5314 df-po 5323 df-so 5324 df-fr 5363 df-se 5364 df-we 5365 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-pred 5984 df-ord 6030 df-on 6031 df-lim 6032 df-suc 6033 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-f1 6191 df-fo 6192 df-f1o 6193 df-fv 6194 df-isom 6195 df-riota 6936 df-ov 6978 df-oprab 6979 df-mpo 6980 df-om 7396 df-1st 7500 df-2nd 7501 df-wrecs 7749 df-recs 7811 df-rdg 7849 df-1o 7904 df-oadd 7908 df-er 8088 df-en 8306 df-dom 8307 df-sdom 8308 df-fin 8309 df-sup 8700 df-oi 8768 df-card 9161 df-pnf 10475 df-mnf 10476 df-xr 10477 df-ltxr 10478 df-le 10479 df-sub 10671 df-neg 10672 df-div 11098 df-nn 11439 df-2 11502 df-3 11503 df-4 11504 df-n0 11707 df-z 11793 df-uz 12058 df-rp 12204 df-fz 12708 df-fzo 12849 df-seq 13184 df-exp 13244 df-hash 13505 df-cj 14318 df-re 14319 df-im 14320 df-sqrt 14454 df-abs 14455 df-clim 14705 df-sum 14903 df-grpo 28063 df-gid 28064 df-ginv 28065 df-ablo 28115 df-vc 28129 df-nv 28162 df-va 28165 df-ba 28166 df-sm 28167 df-0v 28168 df-nmcv 28170 df-dip 28271 df-hnorm 28540 |
This theorem is referenced by: hilhhi 28736 |
Copyright terms: Public domain | W3C validator |