Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fdmi | Structured version Visualization version GIF version |
Description: Inference associated with fdm 6593. The domain of a mapping. (Contributed by NM, 28-Jul-2008.) |
Ref | Expression |
---|---|
fdmi.1 | ⊢ 𝐹:𝐴⟶𝐵 |
Ref | Expression |
---|---|
fdmi | ⊢ dom 𝐹 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdmi.1 | . 2 ⊢ 𝐹:𝐴⟶𝐵 | |
2 | fdm 6593 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐹 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 dom cdm 5580 ⟶wf 6414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-fn 6421 df-f 6422 |
This theorem is referenced by: f0cli 6956 rankvaln 9488 isnum2 9634 r0weon 9699 cfub 9936 cardcf 9939 cflecard 9940 cfle 9941 cflim2 9950 cfidm 9962 cardf 10237 smobeth 10273 inar1 10462 addcompq 10637 addcomnq 10638 mulcompq 10639 mulcomnq 10640 adderpq 10643 mulerpq 10644 addassnq 10645 mulassnq 10646 distrnq 10648 recmulnq 10651 recclnq 10653 dmrecnq 10655 lterpq 10657 ltanq 10658 ltmnq 10659 ltexnq 10662 nsmallnq 10664 ltbtwnnq 10665 prlem934 10720 ltaddpr 10721 ltexprlem2 10724 ltexprlem3 10725 ltexprlem4 10726 ltexprlem6 10728 ltexprlem7 10729 prlem936 10734 eluzel2 12516 uzssz 12532 elixx3g 13021 ndmioo 13035 elfz2 13175 fz0 13200 elfzoel1 13314 elfzoel2 13315 fzoval 13317 ltweuz 13609 fzofi 13622 dmhashres 13983 s1dm 14241 s2dm 14531 sumz 15362 sumss 15364 prod1 15582 prodss 15585 znnen 15849 unbenlem 16537 prmreclem6 16550 eldmcoa 17696 efgsdm 19251 efgsval 19252 efgsp1 19258 efgsfo 19260 efgredleme 19264 efgred 19269 gexex 19369 torsubg 19370 dmdprd 19516 dprdval 19521 iocpnfordt 22274 icomnfordt 22275 uzrest 22956 qtopbaslem 23828 retopbas 23830 tgqioo 23869 re2ndc 23870 bndth 24027 tcphcph 24306 ovolficcss 24538 ismbl 24595 uniiccdif 24647 dyadmbllem 24668 opnmbllem 24670 opnmblALT 24672 mbfimaopnlem 24724 itg1addlem4 24768 itg1addlem4OLD 24769 dvcmul 25013 dvcmulf 25014 dvexp 25022 c1liplem1 25065 deg1n0ima 25159 pserulm 25486 psercn2 25487 psercnlem2 25488 psercnlem1 25489 psercn 25490 pserdvlem1 25491 pserdvlem2 25492 pserdv 25493 pserdv2 25494 abelth 25505 efcn 25507 efcvx 25513 eff1olem 25609 dvrelog 25697 logf1o2 25710 dvlog 25711 efopn 25718 logtayl 25720 cxpcn3lem 25805 cxpcn3 25806 resqrtcn 25807 atancl 25936 atanval 25939 dvatan 25990 atancn 25991 topnfbey 28734 cnaddabloOLD 28844 cnidOLD 28845 cncvcOLD 28846 cnnv 28940 cnnvba 28942 cncph 29082 dfhnorm2 29385 hilablo 29423 hilid 29424 hilvc 29425 hhnv 29428 hhba 29430 hhph 29441 issh2 29472 hhssabloi 29525 hhssnv 29527 hhshsslem1 29530 imaelshi 30321 rnelshi 30322 nlelshi 30323 xrofsup 30992 coinfliprv 32349 erdszelem2 33054 erdszelem5 33057 erdszelem8 33060 msrrcl 33405 mthmsta 33440 bdaydm 33896 madess 33986 oldssmade 33987 madebdayim 33997 oldbdayim 33998 lrold 34004 icoreunrn 35457 icoreelrn 35459 relowlpssretop 35462 poimirlem26 35730 poimirlem27 35731 opnmbllem0 35740 dvtan 35754 seff 41816 sblpnf 41817 dvsconst 41837 dvsid 41838 dvsef 41839 expgrowth 41842 binomcxplemdvbinom 41860 binomcxplemdvsum 41862 binomcxplemnotnn0 41863 addcomgi 41963 dmuz 42666 dmico 42993 dvsinax 43344 fvvolioof 43420 fvvolicof 43422 dirkercncflem2 43535 fourierdlem42 43580 hoicvr 43976 ovolval3 44075 |
Copyright terms: Public domain | W3C validator |