![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fdmi | Structured version Visualization version GIF version |
Description: Inference associated with fdm 6745. The domain of a mapping. (Contributed by NM, 28-Jul-2008.) |
Ref | Expression |
---|---|
fdmi.1 | ⊢ 𝐹:𝐴⟶𝐵 |
Ref | Expression |
---|---|
fdmi | ⊢ dom 𝐹 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdmi.1 | . 2 ⊢ 𝐹:𝐴⟶𝐵 | |
2 | fdm 6745 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐹 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 dom cdm 5688 ⟶wf 6558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6565 df-f 6566 |
This theorem is referenced by: f0cli 7117 rankvaln 9836 isnum2 9982 r0weon 10049 cfub 10286 cardcf 10289 cflecard 10290 cfle 10291 cflim2 10300 cfidm 10312 cardf 10587 smobeth 10623 inar1 10812 addcompq 10987 addcomnq 10988 mulcompq 10989 mulcomnq 10990 adderpq 10993 mulerpq 10994 addassnq 10995 mulassnq 10996 distrnq 10998 recmulnq 11001 recclnq 11003 dmrecnq 11005 lterpq 11007 ltanq 11008 ltmnq 11009 ltexnq 11012 nsmallnq 11014 ltbtwnnq 11015 prlem934 11070 ltaddpr 11071 ltexprlem2 11074 ltexprlem3 11075 ltexprlem4 11076 ltexprlem6 11078 ltexprlem7 11079 prlem936 11084 eluzel2 12880 uzssz 12896 elixx3g 13396 ndmioo 13410 elfz2 13550 fz0 13575 elfzoel1 13693 elfzoel2 13694 fzoval 13696 ltweuz 13998 fzofi 14011 dmhashres 14376 s1dm 14642 s2dm 14925 sumz 15754 sumss 15756 prod1 15976 prodss 15979 znnen 16244 unbenlem 16941 prmreclem6 16954 eldmcoa 18118 efgsdm 19762 efgsval 19763 efgsp1 19769 efgsfo 19771 efgredleme 19775 efgred 19780 gexex 19885 torsubg 19886 dmdprd 20032 dprdval 20037 iocpnfordt 23238 icomnfordt 23239 uzrest 23920 qtopbaslem 24794 retopbas 24796 tgqioo 24835 re2ndc 24836 bndth 25003 tcphcph 25284 ovolficcss 25517 ismbl 25574 uniiccdif 25626 dyadmbllem 25647 opnmbllem 25649 opnmblALT 25651 mbfimaopnlem 25703 itg1addlem4 25747 itg1addlem4OLD 25748 dvcmul 25995 dvcmulf 25996 dvexp 26005 c1liplem1 26049 deg1n0ima 26142 pserulm 26479 psercn2 26480 psercn2OLD 26481 psercnlem2 26482 psercnlem1 26483 psercn 26484 pserdvlem1 26485 pserdvlem2 26486 pserdv 26487 pserdv2 26488 abelth 26499 efcn 26501 efcvx 26507 eff1olem 26604 dvrelog 26693 logf1o2 26706 dvlog 26707 efopn 26714 logtayl 26716 cxpcn3lem 26804 cxpcn3 26805 resqrtcn 26806 atancl 26938 atanval 26941 dvatan 26992 atancn 26993 bdaydm 27833 lltropt 27925 madess 27929 oldssmade 27930 madebdayim 27940 oldbdayim 27941 lrold 27949 madefi 27964 oldfi 27965 topnfbey 30497 cnaddabloOLD 30609 cnidOLD 30610 cncvcOLD 30611 cnnv 30705 cnnvba 30707 cncph 30847 dfhnorm2 31150 hilablo 31188 hilid 31189 hilvc 31190 hhnv 31193 hhba 31195 hhph 31206 issh2 31237 hhssabloi 31290 hhssnv 31292 hhshsslem1 31295 imaelshi 32086 rnelshi 32087 nlelshi 32088 xrofsup 32777 ply1degltel 33594 ply1degleel 33595 ply1degltlss 33596 coinfliprv 34463 erdszelem2 35176 erdszelem5 35179 erdszelem8 35182 msrrcl 35527 mthmsta 35562 icoreunrn 37341 icoreelrn 37343 relowlpssretop 37346 poimirlem26 37632 poimirlem27 37633 opnmbllem0 37642 dvtan 37656 fpwfvss 43401 seff 44304 sblpnf 44305 dvsconst 44325 dvsid 44326 dvsef 44327 expgrowth 44330 binomcxplemdvbinom 44348 binomcxplemdvsum 44350 binomcxplemnotnn0 44351 addcomgi 44451 dmuz 45176 dmico 45517 dvsinax 45868 fvvolioof 45944 fvvolicof 45946 dirkercncflem2 46059 fourierdlem42 46104 hoicvr 46503 ovolval3 46602 |
Copyright terms: Public domain | W3C validator |