![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fdmi | Structured version Visualization version GIF version |
Description: Inference associated with fdm 6726. The domain of a mapping. (Contributed by NM, 28-Jul-2008.) |
Ref | Expression |
---|---|
fdmi.1 | ⊢ 𝐹:𝐴⟶𝐵 |
Ref | Expression |
---|---|
fdmi | ⊢ dom 𝐹 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdmi.1 | . 2 ⊢ 𝐹:𝐴⟶𝐵 | |
2 | fdm 6726 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐹 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 dom cdm 5676 ⟶wf 6539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-fn 6546 df-f 6547 |
This theorem is referenced by: f0cli 7099 rankvaln 9796 isnum2 9942 r0weon 10009 cfub 10246 cardcf 10249 cflecard 10250 cfle 10251 cflim2 10260 cfidm 10272 cardf 10547 smobeth 10583 inar1 10772 addcompq 10947 addcomnq 10948 mulcompq 10949 mulcomnq 10950 adderpq 10953 mulerpq 10954 addassnq 10955 mulassnq 10956 distrnq 10958 recmulnq 10961 recclnq 10963 dmrecnq 10965 lterpq 10967 ltanq 10968 ltmnq 10969 ltexnq 10972 nsmallnq 10974 ltbtwnnq 10975 prlem934 11030 ltaddpr 11031 ltexprlem2 11034 ltexprlem3 11035 ltexprlem4 11036 ltexprlem6 11038 ltexprlem7 11039 prlem936 11044 eluzel2 12829 uzssz 12845 elixx3g 13339 ndmioo 13353 elfz2 13493 fz0 13518 elfzoel1 13632 elfzoel2 13633 fzoval 13635 ltweuz 13928 fzofi 13941 dmhashres 14303 s1dm 14560 s2dm 14843 sumz 15670 sumss 15672 prod1 15890 prodss 15893 znnen 16157 unbenlem 16843 prmreclem6 16856 eldmcoa 18017 efgsdm 19600 efgsval 19601 efgsp1 19607 efgsfo 19609 efgredleme 19613 efgred 19618 gexex 19723 torsubg 19724 dmdprd 19870 dprdval 19875 iocpnfordt 22726 icomnfordt 22727 uzrest 23408 qtopbaslem 24282 retopbas 24284 tgqioo 24323 re2ndc 24324 bndth 24481 tcphcph 24761 ovolficcss 24993 ismbl 25050 uniiccdif 25102 dyadmbllem 25123 opnmbllem 25125 opnmblALT 25127 mbfimaopnlem 25179 itg1addlem4 25223 itg1addlem4OLD 25224 dvcmul 25468 dvcmulf 25469 dvexp 25477 c1liplem1 25520 deg1n0ima 25614 pserulm 25941 psercn2 25942 psercnlem2 25943 psercnlem1 25944 psercn 25945 pserdvlem1 25946 pserdvlem2 25947 pserdv 25948 pserdv2 25949 abelth 25960 efcn 25962 efcvx 25968 eff1olem 26064 dvrelog 26152 logf1o2 26165 dvlog 26166 efopn 26173 logtayl 26175 cxpcn3lem 26262 cxpcn3 26263 resqrtcn 26264 atancl 26393 atanval 26396 dvatan 26447 atancn 26448 bdaydm 27283 lltropt 27375 madess 27379 oldssmade 27380 madebdayim 27390 oldbdayim 27391 lrold 27399 topnfbey 29760 cnaddabloOLD 29872 cnidOLD 29873 cncvcOLD 29874 cnnv 29968 cnnvba 29970 cncph 30110 dfhnorm2 30413 hilablo 30451 hilid 30452 hilvc 30453 hhnv 30456 hhba 30458 hhph 30469 issh2 30500 hhssabloi 30553 hhssnv 30555 hhshsslem1 30558 imaelshi 31349 rnelshi 31350 nlelshi 31351 xrofsup 32018 ply1degltel 32711 ply1degleel 32712 ply1degltlss 32713 coinfliprv 33550 erdszelem2 34252 erdszelem5 34255 erdszelem8 34258 msrrcl 34603 mthmsta 34638 gg-psercn2 35253 icoreunrn 36332 icoreelrn 36334 relowlpssretop 36337 poimirlem26 36606 poimirlem27 36607 opnmbllem0 36616 dvtan 36630 fpwfvss 42251 seff 43156 sblpnf 43157 dvsconst 43177 dvsid 43178 dvsef 43179 expgrowth 43182 binomcxplemdvbinom 43200 binomcxplemdvsum 43202 binomcxplemnotnn0 43203 addcomgi 43303 dmuz 44021 dmico 44363 dvsinax 44714 fvvolioof 44790 fvvolicof 44792 dirkercncflem2 44905 fourierdlem42 44950 hoicvr 45349 ovolval3 45448 |
Copyright terms: Public domain | W3C validator |