Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fdmi | Structured version Visualization version GIF version |
Description: Inference associated with fdm 6654. The domain of a mapping. (Contributed by NM, 28-Jul-2008.) |
Ref | Expression |
---|---|
fdmi.1 | ⊢ 𝐹:𝐴⟶𝐵 |
Ref | Expression |
---|---|
fdmi | ⊢ dom 𝐹 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdmi.1 | . 2 ⊢ 𝐹:𝐴⟶𝐵 | |
2 | fdm 6654 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐹 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 dom cdm 5614 ⟶wf 6469 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-fn 6476 df-f 6477 |
This theorem is referenced by: f0cli 7024 rankvaln 9648 isnum2 9794 r0weon 9861 cfub 10098 cardcf 10101 cflecard 10102 cfle 10103 cflim2 10112 cfidm 10124 cardf 10399 smobeth 10435 inar1 10624 addcompq 10799 addcomnq 10800 mulcompq 10801 mulcomnq 10802 adderpq 10805 mulerpq 10806 addassnq 10807 mulassnq 10808 distrnq 10810 recmulnq 10813 recclnq 10815 dmrecnq 10817 lterpq 10819 ltanq 10820 ltmnq 10821 ltexnq 10824 nsmallnq 10826 ltbtwnnq 10827 prlem934 10882 ltaddpr 10883 ltexprlem2 10886 ltexprlem3 10887 ltexprlem4 10888 ltexprlem6 10890 ltexprlem7 10891 prlem936 10896 eluzel2 12680 uzssz 12696 elixx3g 13185 ndmioo 13199 elfz2 13339 fz0 13364 elfzoel1 13478 elfzoel2 13479 fzoval 13481 ltweuz 13774 fzofi 13787 dmhashres 14148 s1dm 14404 s2dm 14694 sumz 15525 sumss 15527 prod1 15745 prodss 15748 znnen 16012 unbenlem 16698 prmreclem6 16711 eldmcoa 17869 efgsdm 19423 efgsval 19424 efgsp1 19430 efgsfo 19432 efgredleme 19436 efgred 19441 gexex 19541 torsubg 19542 dmdprd 19688 dprdval 19693 iocpnfordt 22464 icomnfordt 22465 uzrest 23146 qtopbaslem 24020 retopbas 24022 tgqioo 24061 re2ndc 24062 bndth 24219 tcphcph 24499 ovolficcss 24731 ismbl 24788 uniiccdif 24840 dyadmbllem 24861 opnmbllem 24863 opnmblALT 24865 mbfimaopnlem 24917 itg1addlem4 24961 itg1addlem4OLD 24962 dvcmul 25206 dvcmulf 25207 dvexp 25215 c1liplem1 25258 deg1n0ima 25352 pserulm 25679 psercn2 25680 psercnlem2 25681 psercnlem1 25682 psercn 25683 pserdvlem1 25684 pserdvlem2 25685 pserdv 25686 pserdv2 25687 abelth 25698 efcn 25700 efcvx 25706 eff1olem 25802 dvrelog 25890 logf1o2 25903 dvlog 25904 efopn 25911 logtayl 25913 cxpcn3lem 25998 cxpcn3 25999 resqrtcn 26000 atancl 26129 atanval 26132 dvatan 26183 atancn 26184 bdaydm 27012 topnfbey 29062 cnaddabloOLD 29172 cnidOLD 29173 cncvcOLD 29174 cnnv 29268 cnnvba 29270 cncph 29410 dfhnorm2 29713 hilablo 29751 hilid 29752 hilvc 29753 hhnv 29756 hhba 29758 hhph 29769 issh2 29800 hhssabloi 29853 hhssnv 29855 hhshsslem1 29858 imaelshi 30649 rnelshi 30650 nlelshi 30651 xrofsup 31318 coinfliprv 32690 erdszelem2 33394 erdszelem5 33397 erdszelem8 33400 msrrcl 33745 mthmsta 33780 madess 34150 oldssmade 34151 madebdayim 34161 oldbdayim 34162 lrold 34168 icoreunrn 35628 icoreelrn 35630 relowlpssretop 35633 poimirlem26 35901 poimirlem27 35902 opnmbllem0 35911 dvtan 35925 fpwfvss 41329 seff 42237 sblpnf 42238 dvsconst 42258 dvsid 42259 dvsef 42260 expgrowth 42263 binomcxplemdvbinom 42281 binomcxplemdvsum 42283 binomcxplemnotnn0 42284 addcomgi 42384 dmuz 43094 dmico 43428 dvsinax 43779 fvvolioof 43855 fvvolicof 43857 dirkercncflem2 43970 fourierdlem42 44015 hoicvr 44412 ovolval3 44511 |
Copyright terms: Public domain | W3C validator |