| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fdmi | Structured version Visualization version GIF version | ||
| Description: Inference associated with fdm 6700. The domain of a mapping. (Contributed by NM, 28-Jul-2008.) |
| Ref | Expression |
|---|---|
| fdmi.1 | ⊢ 𝐹:𝐴⟶𝐵 |
| Ref | Expression |
|---|---|
| fdmi | ⊢ dom 𝐹 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdmi.1 | . 2 ⊢ 𝐹:𝐴⟶𝐵 | |
| 2 | fdm 6700 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐹 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 dom cdm 5641 ⟶wf 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6517 df-f 6518 |
| This theorem is referenced by: f0cli 7073 rankvaln 9759 isnum2 9905 r0weon 9972 cfub 10209 cardcf 10212 cflecard 10213 cfle 10214 cflim2 10223 cfidm 10235 cardf 10510 smobeth 10546 inar1 10735 addcompq 10910 addcomnq 10911 mulcompq 10912 mulcomnq 10913 adderpq 10916 mulerpq 10917 addassnq 10918 mulassnq 10919 distrnq 10921 recmulnq 10924 recclnq 10926 dmrecnq 10928 lterpq 10930 ltanq 10931 ltmnq 10932 ltexnq 10935 nsmallnq 10937 ltbtwnnq 10938 prlem934 10993 ltaddpr 10994 ltexprlem2 10997 ltexprlem3 10998 ltexprlem4 10999 ltexprlem6 11001 ltexprlem7 11002 prlem936 11007 eluzel2 12805 uzssz 12821 elixx3g 13326 ndmioo 13340 elfz2 13482 fz0 13507 elfzoel1 13625 elfzoel2 13626 fzoval 13628 ltweuz 13933 fzofi 13946 dmhashres 14313 s1dm 14580 s2dm 14863 sumz 15695 sumss 15697 prod1 15917 prodss 15920 znnen 16187 unbenlem 16886 prmreclem6 16899 eldmcoa 18034 efgsdm 19667 efgsval 19668 efgsp1 19674 efgsfo 19676 efgredleme 19680 efgred 19685 gexex 19790 torsubg 19791 dmdprd 19937 dprdval 19942 iocpnfordt 23109 icomnfordt 23110 uzrest 23791 qtopbaslem 24653 retopbas 24655 tgqioo 24695 re2ndc 24696 bndth 24864 tcphcph 25144 ovolficcss 25377 ismbl 25434 uniiccdif 25486 dyadmbllem 25507 opnmbllem 25509 opnmblALT 25511 mbfimaopnlem 25563 itg1addlem4 25607 dvcmul 25854 dvcmulf 25855 dvexp 25864 c1liplem1 25908 deg1n0ima 26001 pserulm 26338 psercn2 26339 psercn2OLD 26340 psercnlem2 26341 psercnlem1 26342 psercn 26343 pserdvlem1 26344 pserdvlem2 26345 pserdv 26346 pserdv2 26347 abelth 26358 efcn 26360 efcvx 26366 eff1olem 26464 dvrelog 26553 logf1o2 26566 dvlog 26567 efopn 26574 logtayl 26576 cxpcn3lem 26664 cxpcn3 26665 resqrtcn 26666 atancl 26798 atanval 26801 dvatan 26852 atancn 26853 bdaydm 27693 lltropt 27791 madess 27795 oldssmade 27796 madebdayim 27806 oldbdayim 27807 lrold 27815 madefi 27831 oldfi 27832 topnfbey 30405 cnaddabloOLD 30517 cnidOLD 30518 cncvcOLD 30519 cnnv 30613 cnnvba 30615 cncph 30755 dfhnorm2 31058 hilablo 31096 hilid 31097 hilvc 31098 hhnv 31101 hhba 31103 hhph 31114 issh2 31145 hhssabloi 31198 hhssnv 31200 hhshsslem1 31203 imaelshi 31994 rnelshi 31995 nlelshi 31996 xrofsup 32697 ply1degltel 33567 ply1degleel 33568 ply1degltlss 33569 coinfliprv 34481 erdszelem2 35186 erdszelem5 35189 erdszelem8 35192 msrrcl 35537 mthmsta 35572 icoreunrn 37354 icoreelrn 37356 relowlpssretop 37359 poimirlem26 37647 poimirlem27 37648 opnmbllem0 37657 dvtan 37671 fpwfvss 43408 seff 44305 sblpnf 44306 dvsconst 44326 dvsid 44327 dvsef 44328 expgrowth 44331 binomcxplemdvbinom 44349 binomcxplemdvsum 44351 binomcxplemnotnn0 44352 addcomgi 44452 dmuz 45235 dmico 45568 dvsinax 45918 fvvolioof 45994 fvvolicof 45996 dirkercncflem2 46109 fourierdlem42 46154 hoicvr 46553 ovolval3 46652 fucofvalne 49318 |
| Copyright terms: Public domain | W3C validator |