| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fdmi | Structured version Visualization version GIF version | ||
| Description: Inference associated with fdm 6668. The domain of a mapping. (Contributed by NM, 28-Jul-2008.) |
| Ref | Expression |
|---|---|
| fdmi.1 | ⊢ 𝐹:𝐴⟶𝐵 |
| Ref | Expression |
|---|---|
| fdmi | ⊢ dom 𝐹 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdmi.1 | . 2 ⊢ 𝐹:𝐴⟶𝐵 | |
| 2 | fdm 6668 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐹 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 dom cdm 5621 ⟶wf 6485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6492 df-f 6493 |
| This theorem is referenced by: f0cli 7040 rankvaln 9702 isnum2 9848 r0weon 9913 cfub 10150 cardcf 10153 cflecard 10154 cfle 10155 cflim2 10164 cfidm 10176 cardf 10451 smobeth 10487 inar1 10676 addcompq 10851 addcomnq 10852 mulcompq 10853 mulcomnq 10854 adderpq 10857 mulerpq 10858 addassnq 10859 mulassnq 10860 distrnq 10862 recmulnq 10865 recclnq 10867 dmrecnq 10869 lterpq 10871 ltanq 10872 ltmnq 10873 ltexnq 10876 nsmallnq 10878 ltbtwnnq 10879 prlem934 10934 ltaddpr 10935 ltexprlem2 10938 ltexprlem3 10939 ltexprlem4 10940 ltexprlem6 10942 ltexprlem7 10943 prlem936 10948 eluzel2 12747 uzssz 12763 elixx3g 13268 ndmioo 13282 elfz2 13424 fz0 13449 elfzoel1 13567 elfzoel2 13568 fzoval 13570 ltweuz 13878 fzofi 13891 dmhashres 14258 s1dm 14526 s2dm 14807 sumz 15639 sumss 15641 prod1 15861 prodss 15864 znnen 16131 unbenlem 16830 prmreclem6 16843 eldmcoa 17982 efgsdm 19652 efgsval 19653 efgsp1 19659 efgsfo 19661 efgredleme 19665 efgred 19670 gexex 19775 torsubg 19776 dmdprd 19922 dprdval 19927 iocpnfordt 23140 icomnfordt 23141 uzrest 23822 qtopbaslem 24683 retopbas 24685 tgqioo 24725 re2ndc 24726 bndth 24894 tcphcph 25174 ovolficcss 25407 ismbl 25464 uniiccdif 25516 dyadmbllem 25537 opnmbllem 25539 opnmblALT 25541 mbfimaopnlem 25593 itg1addlem4 25637 dvcmul 25884 dvcmulf 25885 dvexp 25894 c1liplem1 25938 deg1n0ima 26031 pserulm 26368 psercn2 26369 psercn2OLD 26370 psercnlem2 26371 psercnlem1 26372 psercn 26373 pserdvlem1 26374 pserdvlem2 26375 pserdv 26376 pserdv2 26377 abelth 26388 efcn 26390 efcvx 26396 eff1olem 26494 dvrelog 26583 logf1o2 26596 dvlog 26597 efopn 26604 logtayl 26606 cxpcn3lem 26694 cxpcn3 26695 resqrtcn 26696 atancl 26828 atanval 26831 dvatan 26882 atancn 26883 bdaydm 27723 lltropt 27827 madess 27831 oldssmade 27832 oldss 27833 madebdayim 27843 oldbdayim 27844 lrold 27852 madefi 27868 oldfi 27869 topnfbey 30460 cnaddabloOLD 30572 cnidOLD 30573 cncvcOLD 30574 cnnv 30668 cnnvba 30670 cncph 30810 dfhnorm2 31113 hilablo 31151 hilid 31152 hilvc 31153 hhnv 31156 hhba 31158 hhph 31169 issh2 31200 hhssabloi 31253 hhssnv 31255 hhshsslem1 31258 imaelshi 32049 rnelshi 32050 nlelshi 32051 xrofsup 32761 ply1degltel 33566 ply1degleel 33567 ply1degltlss 33568 coinfliprv 34507 erdszelem2 35247 erdszelem5 35250 erdszelem8 35253 msrrcl 35598 mthmsta 35633 icoreunrn 37414 icoreelrn 37416 relowlpssretop 37419 poimirlem26 37696 poimirlem27 37697 opnmbllem0 37706 dvtan 37720 fpwfvss 43519 seff 44416 sblpnf 44417 dvsconst 44437 dvsid 44438 dvsef 44439 expgrowth 44442 binomcxplemdvbinom 44460 binomcxplemdvsum 44462 binomcxplemnotnn0 44463 addcomgi 44562 dmuz 45345 dmico 45677 dvsinax 46025 fvvolioof 46101 fvvolicof 46103 dirkercncflem2 46216 fourierdlem42 46261 hoicvr 46660 ovolval3 46759 sinnpoly 47005 fucofvalne 49440 |
| Copyright terms: Public domain | W3C validator |