![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fdmi | Structured version Visualization version GIF version |
Description: Inference associated with fdm 6726. The domain of a mapping. (Contributed by NM, 28-Jul-2008.) |
Ref | Expression |
---|---|
fdmi.1 | ⊢ 𝐹:𝐴⟶𝐵 |
Ref | Expression |
---|---|
fdmi | ⊢ dom 𝐹 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdmi.1 | . 2 ⊢ 𝐹:𝐴⟶𝐵 | |
2 | fdm 6726 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐹 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 dom cdm 5676 ⟶wf 6539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-fn 6546 df-f 6547 |
This theorem is referenced by: f0cli 7099 rankvaln 9793 isnum2 9939 r0weon 10006 cfub 10243 cardcf 10246 cflecard 10247 cfle 10248 cflim2 10257 cfidm 10269 cardf 10544 smobeth 10580 inar1 10769 addcompq 10944 addcomnq 10945 mulcompq 10946 mulcomnq 10947 adderpq 10950 mulerpq 10951 addassnq 10952 mulassnq 10953 distrnq 10955 recmulnq 10958 recclnq 10960 dmrecnq 10962 lterpq 10964 ltanq 10965 ltmnq 10966 ltexnq 10969 nsmallnq 10971 ltbtwnnq 10972 prlem934 11027 ltaddpr 11028 ltexprlem2 11031 ltexprlem3 11032 ltexprlem4 11033 ltexprlem6 11035 ltexprlem7 11036 prlem936 11041 eluzel2 12826 uzssz 12842 elixx3g 13336 ndmioo 13350 elfz2 13490 fz0 13515 elfzoel1 13629 elfzoel2 13630 fzoval 13632 ltweuz 13925 fzofi 13938 dmhashres 14300 s1dm 14557 s2dm 14840 sumz 15667 sumss 15669 prod1 15887 prodss 15890 znnen 16154 unbenlem 16840 prmreclem6 16853 eldmcoa 18014 efgsdm 19597 efgsval 19598 efgsp1 19604 efgsfo 19606 efgredleme 19610 efgred 19615 gexex 19720 torsubg 19721 dmdprd 19867 dprdval 19872 iocpnfordt 22718 icomnfordt 22719 uzrest 23400 qtopbaslem 24274 retopbas 24276 tgqioo 24315 re2ndc 24316 bndth 24473 tcphcph 24753 ovolficcss 24985 ismbl 25042 uniiccdif 25094 dyadmbllem 25115 opnmbllem 25117 opnmblALT 25119 mbfimaopnlem 25171 itg1addlem4 25215 itg1addlem4OLD 25216 dvcmul 25460 dvcmulf 25461 dvexp 25469 c1liplem1 25512 deg1n0ima 25606 pserulm 25933 psercn2 25934 psercnlem2 25935 psercnlem1 25936 psercn 25937 pserdvlem1 25938 pserdvlem2 25939 pserdv 25940 pserdv2 25941 abelth 25952 efcn 25954 efcvx 25960 eff1olem 26056 dvrelog 26144 logf1o2 26157 dvlog 26158 efopn 26165 logtayl 26167 cxpcn3lem 26252 cxpcn3 26253 resqrtcn 26254 atancl 26383 atanval 26386 dvatan 26437 atancn 26438 bdaydm 27273 lltropt 27364 madess 27368 oldssmade 27369 madebdayim 27379 oldbdayim 27380 lrold 27388 topnfbey 29719 cnaddabloOLD 29829 cnidOLD 29830 cncvcOLD 29831 cnnv 29925 cnnvba 29927 cncph 30067 dfhnorm2 30370 hilablo 30408 hilid 30409 hilvc 30410 hhnv 30413 hhba 30415 hhph 30426 issh2 30457 hhssabloi 30510 hhssnv 30512 hhshsslem1 30515 imaelshi 31306 rnelshi 31307 nlelshi 31308 xrofsup 31975 ply1degltel 32661 ply1degltlss 32662 coinfliprv 33476 erdszelem2 34178 erdszelem5 34181 erdszelem8 34184 msrrcl 34529 mthmsta 34564 gg-psercn2 35173 icoreunrn 36235 icoreelrn 36237 relowlpssretop 36240 poimirlem26 36509 poimirlem27 36510 opnmbllem0 36519 dvtan 36533 fpwfvss 42153 seff 43058 sblpnf 43059 dvsconst 43079 dvsid 43080 dvsef 43081 expgrowth 43084 binomcxplemdvbinom 43102 binomcxplemdvsum 43104 binomcxplemnotnn0 43105 addcomgi 43205 dmuz 43926 dmico 44268 dvsinax 44619 fvvolioof 44695 fvvolicof 44697 dirkercncflem2 44810 fourierdlem42 44855 hoicvr 45254 ovolval3 45353 |
Copyright terms: Public domain | W3C validator |