| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fdmi | Structured version Visualization version GIF version | ||
| Description: Inference associated with fdm 6697. The domain of a mapping. (Contributed by NM, 28-Jul-2008.) |
| Ref | Expression |
|---|---|
| fdmi.1 | ⊢ 𝐹:𝐴⟶𝐵 |
| Ref | Expression |
|---|---|
| fdmi | ⊢ dom 𝐹 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdmi.1 | . 2 ⊢ 𝐹:𝐴⟶𝐵 | |
| 2 | fdm 6697 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐹 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 dom cdm 5638 ⟶wf 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6514 df-f 6515 |
| This theorem is referenced by: f0cli 7070 rankvaln 9752 isnum2 9898 r0weon 9965 cfub 10202 cardcf 10205 cflecard 10206 cfle 10207 cflim2 10216 cfidm 10228 cardf 10503 smobeth 10539 inar1 10728 addcompq 10903 addcomnq 10904 mulcompq 10905 mulcomnq 10906 adderpq 10909 mulerpq 10910 addassnq 10911 mulassnq 10912 distrnq 10914 recmulnq 10917 recclnq 10919 dmrecnq 10921 lterpq 10923 ltanq 10924 ltmnq 10925 ltexnq 10928 nsmallnq 10930 ltbtwnnq 10931 prlem934 10986 ltaddpr 10987 ltexprlem2 10990 ltexprlem3 10991 ltexprlem4 10992 ltexprlem6 10994 ltexprlem7 10995 prlem936 11000 eluzel2 12798 uzssz 12814 elixx3g 13319 ndmioo 13333 elfz2 13475 fz0 13500 elfzoel1 13618 elfzoel2 13619 fzoval 13621 ltweuz 13926 fzofi 13939 dmhashres 14306 s1dm 14573 s2dm 14856 sumz 15688 sumss 15690 prod1 15910 prodss 15913 znnen 16180 unbenlem 16879 prmreclem6 16892 eldmcoa 18027 efgsdm 19660 efgsval 19661 efgsp1 19667 efgsfo 19669 efgredleme 19673 efgred 19678 gexex 19783 torsubg 19784 dmdprd 19930 dprdval 19935 iocpnfordt 23102 icomnfordt 23103 uzrest 23784 qtopbaslem 24646 retopbas 24648 tgqioo 24688 re2ndc 24689 bndth 24857 tcphcph 25137 ovolficcss 25370 ismbl 25427 uniiccdif 25479 dyadmbllem 25500 opnmbllem 25502 opnmblALT 25504 mbfimaopnlem 25556 itg1addlem4 25600 dvcmul 25847 dvcmulf 25848 dvexp 25857 c1liplem1 25901 deg1n0ima 25994 pserulm 26331 psercn2 26332 psercn2OLD 26333 psercnlem2 26334 psercnlem1 26335 psercn 26336 pserdvlem1 26337 pserdvlem2 26338 pserdv 26339 pserdv2 26340 abelth 26351 efcn 26353 efcvx 26359 eff1olem 26457 dvrelog 26546 logf1o2 26559 dvlog 26560 efopn 26567 logtayl 26569 cxpcn3lem 26657 cxpcn3 26658 resqrtcn 26659 atancl 26791 atanval 26794 dvatan 26845 atancn 26846 bdaydm 27686 lltropt 27784 madess 27788 oldssmade 27789 madebdayim 27799 oldbdayim 27800 lrold 27808 madefi 27824 oldfi 27825 topnfbey 30398 cnaddabloOLD 30510 cnidOLD 30511 cncvcOLD 30512 cnnv 30606 cnnvba 30608 cncph 30748 dfhnorm2 31051 hilablo 31089 hilid 31090 hilvc 31091 hhnv 31094 hhba 31096 hhph 31107 issh2 31138 hhssabloi 31191 hhssnv 31193 hhshsslem1 31196 imaelshi 31987 rnelshi 31988 nlelshi 31989 xrofsup 32690 ply1degltel 33560 ply1degleel 33561 ply1degltlss 33562 coinfliprv 34474 erdszelem2 35179 erdszelem5 35182 erdszelem8 35185 msrrcl 35530 mthmsta 35565 icoreunrn 37347 icoreelrn 37349 relowlpssretop 37352 poimirlem26 37640 poimirlem27 37641 opnmbllem0 37650 dvtan 37664 fpwfvss 43401 seff 44298 sblpnf 44299 dvsconst 44319 dvsid 44320 dvsef 44321 expgrowth 44324 binomcxplemdvbinom 44342 binomcxplemdvsum 44344 binomcxplemnotnn0 44345 addcomgi 44445 dmuz 45228 dmico 45561 dvsinax 45911 fvvolioof 45987 fvvolicof 45989 dirkercncflem2 46102 fourierdlem42 46147 hoicvr 46546 ovolval3 46645 sinnpoly 46892 fucofvalne 49314 |
| Copyright terms: Public domain | W3C validator |