![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fdmi | Structured version Visualization version GIF version |
Description: Inference associated with fdm 6756. The domain of a mapping. (Contributed by NM, 28-Jul-2008.) |
Ref | Expression |
---|---|
fdmi.1 | ⊢ 𝐹:𝐴⟶𝐵 |
Ref | Expression |
---|---|
fdmi | ⊢ dom 𝐹 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdmi.1 | . 2 ⊢ 𝐹:𝐴⟶𝐵 | |
2 | fdm 6756 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐹 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 dom cdm 5700 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6576 df-f 6577 |
This theorem is referenced by: f0cli 7132 rankvaln 9868 isnum2 10014 r0weon 10081 cfub 10318 cardcf 10321 cflecard 10322 cfle 10323 cflim2 10332 cfidm 10344 cardf 10619 smobeth 10655 inar1 10844 addcompq 11019 addcomnq 11020 mulcompq 11021 mulcomnq 11022 adderpq 11025 mulerpq 11026 addassnq 11027 mulassnq 11028 distrnq 11030 recmulnq 11033 recclnq 11035 dmrecnq 11037 lterpq 11039 ltanq 11040 ltmnq 11041 ltexnq 11044 nsmallnq 11046 ltbtwnnq 11047 prlem934 11102 ltaddpr 11103 ltexprlem2 11106 ltexprlem3 11107 ltexprlem4 11108 ltexprlem6 11110 ltexprlem7 11111 prlem936 11116 eluzel2 12908 uzssz 12924 elixx3g 13420 ndmioo 13434 elfz2 13574 fz0 13599 elfzoel1 13714 elfzoel2 13715 fzoval 13717 ltweuz 14012 fzofi 14025 dmhashres 14390 s1dm 14656 s2dm 14939 sumz 15770 sumss 15772 prod1 15992 prodss 15995 znnen 16260 unbenlem 16955 prmreclem6 16968 eldmcoa 18132 efgsdm 19772 efgsval 19773 efgsp1 19779 efgsfo 19781 efgredleme 19785 efgred 19790 gexex 19895 torsubg 19896 dmdprd 20042 dprdval 20047 iocpnfordt 23244 icomnfordt 23245 uzrest 23926 qtopbaslem 24800 retopbas 24802 tgqioo 24841 re2ndc 24842 bndth 25009 tcphcph 25290 ovolficcss 25523 ismbl 25580 uniiccdif 25632 dyadmbllem 25653 opnmbllem 25655 opnmblALT 25657 mbfimaopnlem 25709 itg1addlem4 25753 itg1addlem4OLD 25754 dvcmul 26001 dvcmulf 26002 dvexp 26011 c1liplem1 26055 deg1n0ima 26148 pserulm 26483 psercn2 26484 psercn2OLD 26485 psercnlem2 26486 psercnlem1 26487 psercn 26488 pserdvlem1 26489 pserdvlem2 26490 pserdv 26491 pserdv2 26492 abelth 26503 efcn 26505 efcvx 26511 eff1olem 26608 dvrelog 26697 logf1o2 26710 dvlog 26711 efopn 26718 logtayl 26720 cxpcn3lem 26808 cxpcn3 26809 resqrtcn 26810 atancl 26942 atanval 26945 dvatan 26996 atancn 26997 bdaydm 27837 lltropt 27929 madess 27933 oldssmade 27934 madebdayim 27944 oldbdayim 27945 lrold 27953 madefi 27968 oldfi 27969 topnfbey 30501 cnaddabloOLD 30613 cnidOLD 30614 cncvcOLD 30615 cnnv 30709 cnnvba 30711 cncph 30851 dfhnorm2 31154 hilablo 31192 hilid 31193 hilvc 31194 hhnv 31197 hhba 31199 hhph 31210 issh2 31241 hhssabloi 31294 hhssnv 31296 hhshsslem1 31299 imaelshi 32090 rnelshi 32091 nlelshi 32092 xrofsup 32774 ply1degltel 33580 ply1degleel 33581 ply1degltlss 33582 coinfliprv 34447 erdszelem2 35160 erdszelem5 35163 erdszelem8 35166 msrrcl 35511 mthmsta 35546 icoreunrn 37325 icoreelrn 37327 relowlpssretop 37330 poimirlem26 37606 poimirlem27 37607 opnmbllem0 37616 dvtan 37630 fpwfvss 43374 seff 44278 sblpnf 44279 dvsconst 44299 dvsid 44300 dvsef 44301 expgrowth 44304 binomcxplemdvbinom 44322 binomcxplemdvsum 44324 binomcxplemnotnn0 44325 addcomgi 44425 dmuz 45141 dmico 45483 dvsinax 45834 fvvolioof 45910 fvvolicof 45912 dirkercncflem2 46025 fourierdlem42 46070 hoicvr 46469 ovolval3 46568 |
Copyright terms: Public domain | W3C validator |