| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fdmi | Structured version Visualization version GIF version | ||
| Description: Inference associated with fdm 6656. The domain of a mapping. (Contributed by NM, 28-Jul-2008.) |
| Ref | Expression |
|---|---|
| fdmi.1 | ⊢ 𝐹:𝐴⟶𝐵 |
| Ref | Expression |
|---|---|
| fdmi | ⊢ dom 𝐹 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdmi.1 | . 2 ⊢ 𝐹:𝐴⟶𝐵 | |
| 2 | fdm 6656 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐹 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 dom cdm 5614 ⟶wf 6473 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6480 df-f 6481 |
| This theorem is referenced by: f0cli 7026 rankvaln 9684 isnum2 9830 r0weon 9895 cfub 10132 cardcf 10135 cflecard 10136 cfle 10137 cflim2 10146 cfidm 10158 cardf 10433 smobeth 10469 inar1 10658 addcompq 10833 addcomnq 10834 mulcompq 10835 mulcomnq 10836 adderpq 10839 mulerpq 10840 addassnq 10841 mulassnq 10842 distrnq 10844 recmulnq 10847 recclnq 10849 dmrecnq 10851 lterpq 10853 ltanq 10854 ltmnq 10855 ltexnq 10858 nsmallnq 10860 ltbtwnnq 10861 prlem934 10916 ltaddpr 10917 ltexprlem2 10920 ltexprlem3 10921 ltexprlem4 10922 ltexprlem6 10924 ltexprlem7 10925 prlem936 10930 eluzel2 12729 uzssz 12745 elixx3g 13250 ndmioo 13264 elfz2 13406 fz0 13431 elfzoel1 13549 elfzoel2 13550 fzoval 13552 ltweuz 13860 fzofi 13873 dmhashres 14240 s1dm 14508 s2dm 14789 sumz 15621 sumss 15623 prod1 15843 prodss 15846 znnen 16113 unbenlem 16812 prmreclem6 16825 eldmcoa 17964 efgsdm 19635 efgsval 19636 efgsp1 19642 efgsfo 19644 efgredleme 19648 efgred 19653 gexex 19758 torsubg 19759 dmdprd 19905 dprdval 19910 iocpnfordt 23123 icomnfordt 23124 uzrest 23805 qtopbaslem 24666 retopbas 24668 tgqioo 24708 re2ndc 24709 bndth 24877 tcphcph 25157 ovolficcss 25390 ismbl 25447 uniiccdif 25499 dyadmbllem 25520 opnmbllem 25522 opnmblALT 25524 mbfimaopnlem 25576 itg1addlem4 25620 dvcmul 25867 dvcmulf 25868 dvexp 25877 c1liplem1 25921 deg1n0ima 26014 pserulm 26351 psercn2 26352 psercn2OLD 26353 psercnlem2 26354 psercnlem1 26355 psercn 26356 pserdvlem1 26357 pserdvlem2 26358 pserdv 26359 pserdv2 26360 abelth 26371 efcn 26373 efcvx 26379 eff1olem 26477 dvrelog 26566 logf1o2 26579 dvlog 26580 efopn 26587 logtayl 26589 cxpcn3lem 26677 cxpcn3 26678 resqrtcn 26679 atancl 26811 atanval 26814 dvatan 26865 atancn 26866 bdaydm 27706 lltropt 27810 madess 27814 oldssmade 27815 oldss 27816 madebdayim 27826 oldbdayim 27827 lrold 27835 madefi 27851 oldfi 27852 topnfbey 30439 cnaddabloOLD 30551 cnidOLD 30552 cncvcOLD 30553 cnnv 30647 cnnvba 30649 cncph 30789 dfhnorm2 31092 hilablo 31130 hilid 31131 hilvc 31132 hhnv 31135 hhba 31137 hhph 31148 issh2 31179 hhssabloi 31232 hhssnv 31234 hhshsslem1 31237 imaelshi 32028 rnelshi 32029 nlelshi 32030 xrofsup 32740 ply1degltel 33545 ply1degleel 33546 ply1degltlss 33547 coinfliprv 34486 erdszelem2 35204 erdszelem5 35207 erdszelem8 35210 msrrcl 35555 mthmsta 35590 icoreunrn 37372 icoreelrn 37374 relowlpssretop 37377 poimirlem26 37665 poimirlem27 37666 opnmbllem0 37675 dvtan 37689 fpwfvss 43424 seff 44321 sblpnf 44322 dvsconst 44342 dvsid 44343 dvsef 44344 expgrowth 44347 binomcxplemdvbinom 44365 binomcxplemdvsum 44367 binomcxplemnotnn0 44368 addcomgi 44467 dmuz 45250 dmico 45582 dvsinax 45930 fvvolioof 46006 fvvolicof 46008 dirkercncflem2 46121 fourierdlem42 46166 hoicvr 46565 ovolval3 46664 sinnpoly 46901 fucofvalne 49336 |
| Copyright terms: Public domain | W3C validator |