| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fdmi | Structured version Visualization version GIF version | ||
| Description: Inference associated with fdm 6714. The domain of a mapping. (Contributed by NM, 28-Jul-2008.) |
| Ref | Expression |
|---|---|
| fdmi.1 | ⊢ 𝐹:𝐴⟶𝐵 |
| Ref | Expression |
|---|---|
| fdmi | ⊢ dom 𝐹 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdmi.1 | . 2 ⊢ 𝐹:𝐴⟶𝐵 | |
| 2 | fdm 6714 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐹 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 dom cdm 5654 ⟶wf 6526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6533 df-f 6534 |
| This theorem is referenced by: f0cli 7087 rankvaln 9811 isnum2 9957 r0weon 10024 cfub 10261 cardcf 10264 cflecard 10265 cfle 10266 cflim2 10275 cfidm 10287 cardf 10562 smobeth 10598 inar1 10787 addcompq 10962 addcomnq 10963 mulcompq 10964 mulcomnq 10965 adderpq 10968 mulerpq 10969 addassnq 10970 mulassnq 10971 distrnq 10973 recmulnq 10976 recclnq 10978 dmrecnq 10980 lterpq 10982 ltanq 10983 ltmnq 10984 ltexnq 10987 nsmallnq 10989 ltbtwnnq 10990 prlem934 11045 ltaddpr 11046 ltexprlem2 11049 ltexprlem3 11050 ltexprlem4 11051 ltexprlem6 11053 ltexprlem7 11054 prlem936 11059 eluzel2 12855 uzssz 12871 elixx3g 13373 ndmioo 13387 elfz2 13529 fz0 13554 elfzoel1 13672 elfzoel2 13673 fzoval 13675 ltweuz 13977 fzofi 13990 dmhashres 14357 s1dm 14624 s2dm 14907 sumz 15736 sumss 15738 prod1 15958 prodss 15961 znnen 16228 unbenlem 16926 prmreclem6 16939 eldmcoa 18076 efgsdm 19709 efgsval 19710 efgsp1 19716 efgsfo 19718 efgredleme 19722 efgred 19727 gexex 19832 torsubg 19833 dmdprd 19979 dprdval 19984 iocpnfordt 23151 icomnfordt 23152 uzrest 23833 qtopbaslem 24695 retopbas 24697 tgqioo 24737 re2ndc 24738 bndth 24906 tcphcph 25187 ovolficcss 25420 ismbl 25477 uniiccdif 25529 dyadmbllem 25550 opnmbllem 25552 opnmblALT 25554 mbfimaopnlem 25606 itg1addlem4 25650 dvcmul 25897 dvcmulf 25898 dvexp 25907 c1liplem1 25951 deg1n0ima 26044 pserulm 26381 psercn2 26382 psercn2OLD 26383 psercnlem2 26384 psercnlem1 26385 psercn 26386 pserdvlem1 26387 pserdvlem2 26388 pserdv 26389 pserdv2 26390 abelth 26401 efcn 26403 efcvx 26409 eff1olem 26507 dvrelog 26596 logf1o2 26609 dvlog 26610 efopn 26617 logtayl 26619 cxpcn3lem 26707 cxpcn3 26708 resqrtcn 26709 atancl 26841 atanval 26844 dvatan 26895 atancn 26896 bdaydm 27736 lltropt 27828 madess 27832 oldssmade 27833 madebdayim 27843 oldbdayim 27844 lrold 27852 madefi 27867 oldfi 27868 topnfbey 30396 cnaddabloOLD 30508 cnidOLD 30509 cncvcOLD 30510 cnnv 30604 cnnvba 30606 cncph 30746 dfhnorm2 31049 hilablo 31087 hilid 31088 hilvc 31089 hhnv 31092 hhba 31094 hhph 31105 issh2 31136 hhssabloi 31189 hhssnv 31191 hhshsslem1 31194 imaelshi 31985 rnelshi 31986 nlelshi 31987 xrofsup 32690 ply1degltel 33550 ply1degleel 33551 ply1degltlss 33552 coinfliprv 34461 erdszelem2 35160 erdszelem5 35163 erdszelem8 35166 msrrcl 35511 mthmsta 35546 icoreunrn 37323 icoreelrn 37325 relowlpssretop 37328 poimirlem26 37616 poimirlem27 37617 opnmbllem0 37626 dvtan 37640 fpwfvss 43383 seff 44281 sblpnf 44282 dvsconst 44302 dvsid 44303 dvsef 44304 expgrowth 44307 binomcxplemdvbinom 44325 binomcxplemdvsum 44327 binomcxplemnotnn0 44328 addcomgi 44428 dmuz 45206 dmico 45540 dvsinax 45890 fvvolioof 45966 fvvolicof 45968 dirkercncflem2 46081 fourierdlem42 46126 hoicvr 46525 ovolval3 46624 fucofvalne 49184 |
| Copyright terms: Public domain | W3C validator |