| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fdmi | Structured version Visualization version GIF version | ||
| Description: Inference associated with fdm 6665. The domain of a mapping. (Contributed by NM, 28-Jul-2008.) |
| Ref | Expression |
|---|---|
| fdmi.1 | ⊢ 𝐹:𝐴⟶𝐵 |
| Ref | Expression |
|---|---|
| fdmi | ⊢ dom 𝐹 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdmi.1 | . 2 ⊢ 𝐹:𝐴⟶𝐵 | |
| 2 | fdm 6665 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐹 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 dom cdm 5623 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6489 df-f 6490 |
| This theorem is referenced by: f0cli 7036 rankvaln 9714 isnum2 9860 r0weon 9925 cfub 10162 cardcf 10165 cflecard 10166 cfle 10167 cflim2 10176 cfidm 10188 cardf 10463 smobeth 10499 inar1 10688 addcompq 10863 addcomnq 10864 mulcompq 10865 mulcomnq 10866 adderpq 10869 mulerpq 10870 addassnq 10871 mulassnq 10872 distrnq 10874 recmulnq 10877 recclnq 10879 dmrecnq 10881 lterpq 10883 ltanq 10884 ltmnq 10885 ltexnq 10888 nsmallnq 10890 ltbtwnnq 10891 prlem934 10946 ltaddpr 10947 ltexprlem2 10950 ltexprlem3 10951 ltexprlem4 10952 ltexprlem6 10954 ltexprlem7 10955 prlem936 10960 eluzel2 12758 uzssz 12774 elixx3g 13279 ndmioo 13293 elfz2 13435 fz0 13460 elfzoel1 13578 elfzoel2 13579 fzoval 13581 ltweuz 13886 fzofi 13899 dmhashres 14266 s1dm 14533 s2dm 14815 sumz 15647 sumss 15649 prod1 15869 prodss 15872 znnen 16139 unbenlem 16838 prmreclem6 16851 eldmcoa 17990 efgsdm 19627 efgsval 19628 efgsp1 19634 efgsfo 19636 efgredleme 19640 efgred 19645 gexex 19750 torsubg 19751 dmdprd 19897 dprdval 19902 iocpnfordt 23118 icomnfordt 23119 uzrest 23800 qtopbaslem 24662 retopbas 24664 tgqioo 24704 re2ndc 24705 bndth 24873 tcphcph 25153 ovolficcss 25386 ismbl 25443 uniiccdif 25495 dyadmbllem 25516 opnmbllem 25518 opnmblALT 25520 mbfimaopnlem 25572 itg1addlem4 25616 dvcmul 25863 dvcmulf 25864 dvexp 25873 c1liplem1 25917 deg1n0ima 26010 pserulm 26347 psercn2 26348 psercn2OLD 26349 psercnlem2 26350 psercnlem1 26351 psercn 26352 pserdvlem1 26353 pserdvlem2 26354 pserdv 26355 pserdv2 26356 abelth 26367 efcn 26369 efcvx 26375 eff1olem 26473 dvrelog 26562 logf1o2 26575 dvlog 26576 efopn 26583 logtayl 26585 cxpcn3lem 26673 cxpcn3 26674 resqrtcn 26675 atancl 26807 atanval 26810 dvatan 26861 atancn 26862 bdaydm 27702 lltropt 27804 madess 27808 oldssmade 27809 oldss 27810 madebdayim 27820 oldbdayim 27821 lrold 27829 madefi 27845 oldfi 27846 topnfbey 30431 cnaddabloOLD 30543 cnidOLD 30544 cncvcOLD 30545 cnnv 30639 cnnvba 30641 cncph 30781 dfhnorm2 31084 hilablo 31122 hilid 31123 hilvc 31124 hhnv 31127 hhba 31129 hhph 31140 issh2 31171 hhssabloi 31224 hhssnv 31226 hhshsslem1 31229 imaelshi 32020 rnelshi 32021 nlelshi 32022 xrofsup 32723 ply1degltel 33536 ply1degleel 33537 ply1degltlss 33538 coinfliprv 34450 erdszelem2 35164 erdszelem5 35167 erdszelem8 35170 msrrcl 35515 mthmsta 35550 icoreunrn 37332 icoreelrn 37334 relowlpssretop 37337 poimirlem26 37625 poimirlem27 37626 opnmbllem0 37635 dvtan 37649 fpwfvss 43385 seff 44282 sblpnf 44283 dvsconst 44303 dvsid 44304 dvsef 44305 expgrowth 44308 binomcxplemdvbinom 44326 binomcxplemdvsum 44328 binomcxplemnotnn0 44329 addcomgi 44429 dmuz 45212 dmico 45545 dvsinax 45895 fvvolioof 45971 fvvolicof 45973 dirkercncflem2 46086 fourierdlem42 46131 hoicvr 46530 ovolval3 46629 sinnpoly 46876 fucofvalne 49298 |
| Copyright terms: Public domain | W3C validator |