Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fdmi | Structured version Visualization version GIF version |
Description: Inference associated with fdm 6618. The domain of a mapping. (Contributed by NM, 28-Jul-2008.) |
Ref | Expression |
---|---|
fdmi.1 | ⊢ 𝐹:𝐴⟶𝐵 |
Ref | Expression |
---|---|
fdmi | ⊢ dom 𝐹 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdmi.1 | . 2 ⊢ 𝐹:𝐴⟶𝐵 | |
2 | fdm 6618 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐹 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 dom cdm 5590 ⟶wf 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-fn 6440 df-f 6441 |
This theorem is referenced by: f0cli 6983 rankvaln 9566 isnum2 9712 r0weon 9777 cfub 10014 cardcf 10017 cflecard 10018 cfle 10019 cflim2 10028 cfidm 10040 cardf 10315 smobeth 10351 inar1 10540 addcompq 10715 addcomnq 10716 mulcompq 10717 mulcomnq 10718 adderpq 10721 mulerpq 10722 addassnq 10723 mulassnq 10724 distrnq 10726 recmulnq 10729 recclnq 10731 dmrecnq 10733 lterpq 10735 ltanq 10736 ltmnq 10737 ltexnq 10740 nsmallnq 10742 ltbtwnnq 10743 prlem934 10798 ltaddpr 10799 ltexprlem2 10802 ltexprlem3 10803 ltexprlem4 10804 ltexprlem6 10806 ltexprlem7 10807 prlem936 10812 eluzel2 12596 uzssz 12612 elixx3g 13101 ndmioo 13115 elfz2 13255 fz0 13280 elfzoel1 13394 elfzoel2 13395 fzoval 13397 ltweuz 13690 fzofi 13703 dmhashres 14064 s1dm 14322 s2dm 14612 sumz 15443 sumss 15445 prod1 15663 prodss 15666 znnen 15930 unbenlem 16618 prmreclem6 16631 eldmcoa 17789 efgsdm 19345 efgsval 19346 efgsp1 19352 efgsfo 19354 efgredleme 19358 efgred 19363 gexex 19463 torsubg 19464 dmdprd 19610 dprdval 19615 iocpnfordt 22375 icomnfordt 22376 uzrest 23057 qtopbaslem 23931 retopbas 23933 tgqioo 23972 re2ndc 23973 bndth 24130 tcphcph 24410 ovolficcss 24642 ismbl 24699 uniiccdif 24751 dyadmbllem 24772 opnmbllem 24774 opnmblALT 24776 mbfimaopnlem 24828 itg1addlem4 24872 itg1addlem4OLD 24873 dvcmul 25117 dvcmulf 25118 dvexp 25126 c1liplem1 25169 deg1n0ima 25263 pserulm 25590 psercn2 25591 psercnlem2 25592 psercnlem1 25593 psercn 25594 pserdvlem1 25595 pserdvlem2 25596 pserdv 25597 pserdv2 25598 abelth 25609 efcn 25611 efcvx 25617 eff1olem 25713 dvrelog 25801 logf1o2 25814 dvlog 25815 efopn 25822 logtayl 25824 cxpcn3lem 25909 cxpcn3 25910 resqrtcn 25911 atancl 26040 atanval 26043 dvatan 26094 atancn 26095 topnfbey 28842 cnaddabloOLD 28952 cnidOLD 28953 cncvcOLD 28954 cnnv 29048 cnnvba 29050 cncph 29190 dfhnorm2 29493 hilablo 29531 hilid 29532 hilvc 29533 hhnv 29536 hhba 29538 hhph 29549 issh2 29580 hhssabloi 29633 hhssnv 29635 hhshsslem1 29638 imaelshi 30429 rnelshi 30430 nlelshi 30431 xrofsup 31099 coinfliprv 32458 erdszelem2 33163 erdszelem5 33166 erdszelem8 33169 msrrcl 33514 mthmsta 33549 bdaydm 33978 madess 34068 oldssmade 34069 madebdayim 34079 oldbdayim 34080 lrold 34086 icoreunrn 35539 icoreelrn 35541 relowlpssretop 35544 poimirlem26 35812 poimirlem27 35813 opnmbllem0 35822 dvtan 35836 seff 41934 sblpnf 41935 dvsconst 41955 dvsid 41956 dvsef 41957 expgrowth 41960 binomcxplemdvbinom 41978 binomcxplemdvsum 41980 binomcxplemnotnn0 41981 addcomgi 42081 dmuz 42784 dmico 43110 dvsinax 43461 fvvolioof 43537 fvvolicof 43539 dirkercncflem2 43652 fourierdlem42 43697 hoicvr 44093 ovolval3 44192 |
Copyright terms: Public domain | W3C validator |