![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > normf | Structured version Visualization version GIF version |
Description: The norm function maps from Hilbert space to reals. (Contributed by NM, 6-Sep-2007.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
normf | ⊢ normℎ: ℋ⟶ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfhnorm2 30370 | . 2 ⊢ normℎ = (𝑥 ∈ ℋ ↦ (√‘(𝑥 ·ih 𝑥))) | |
2 | hiidrcl 30343 | . . 3 ⊢ (𝑥 ∈ ℋ → (𝑥 ·ih 𝑥) ∈ ℝ) | |
3 | hiidge0 30346 | . . 3 ⊢ (𝑥 ∈ ℋ → 0 ≤ (𝑥 ·ih 𝑥)) | |
4 | 2, 3 | resqrtcld 15363 | . 2 ⊢ (𝑥 ∈ ℋ → (√‘(𝑥 ·ih 𝑥)) ∈ ℝ) |
5 | 1, 4 | fmpti 7111 | 1 ⊢ normℎ: ℋ⟶ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ⟶wf 6539 ‘cfv 6543 (class class class)co 7408 ℝcr 11108 √csqrt 15179 ℋchba 30167 ·ih csp 30170 normℎcno 30171 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 ax-hv0cl 30251 ax-hvmul0 30258 ax-hfi 30327 ax-his1 30330 ax-his3 30332 ax-his4 30333 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-n0 12472 df-z 12558 df-uz 12822 df-rp 12974 df-seq 13966 df-exp 14027 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-hnorm 30216 |
This theorem is referenced by: normcl 30373 hhnv 30413 hhph 30426 hhssva 30505 hhsssm 30506 hhssnm 30507 hhssnv 30512 hhshsslem1 30515 hhsssh 30517 |
Copyright terms: Public domain | W3C validator |