MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfiin3 Structured version   Visualization version   GIF version

Theorem dfiin3 5937
Description: Alternate definition of indexed intersection when 𝐵 is a set. (Contributed by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
dfiun3.1 𝐵 ∈ V
Assertion
Ref Expression
dfiin3 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵)

Proof of Theorem dfiin3
StepHypRef Expression
1 dfiin3g 5935 . 2 (∀𝑥𝐴 𝐵 ∈ V → 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵))
2 dfiun3.1 . . 3 𝐵 ∈ V
32a1i 11 . 2 (𝑥𝐴𝐵 ∈ V)
41, 3mprg 3051 1 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3450   cint 4913   ciin 4959  cmpt 5191  ran crn 5642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-int 4914  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-cnv 5649  df-dm 5651  df-rn 5652
This theorem is referenced by:  subdrgint  20719  fclscmpi  23923
  Copyright terms: Public domain W3C validator