MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfiin3g Structured version   Visualization version   GIF version

Theorem dfiin3g 5874
Description: Alternate definition of indexed intersection when 𝐵 is a set. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dfiin3g (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵))

Proof of Theorem dfiin3g
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfiin2g 4962 . 2 (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
2 eqid 2738 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
32rnmpt 5864 . . 3 ran (𝑥𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
43inteqi 4883 . 2 ran (𝑥𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
51, 4eqtr4di 2796 1 (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  {cab 2715  wral 3064  wrex 3065   cint 4879   ciin 4925  cmpt 5157  ran crn 5590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-int 4880  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-cnv 5597  df-dm 5599  df-rn 5600
This theorem is referenced by:  dfiin3  5876  riinint  5877  iinon  8171  cmpfi  22559
  Copyright terms: Public domain W3C validator