MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfiin3g Structured version   Visualization version   GIF version

Theorem dfiin3g 5991
Description: Alternate definition of indexed intersection when 𝐵 is a set. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dfiin3g (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵))

Proof of Theorem dfiin3g
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfiin2g 5055 . 2 (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
2 eqid 2740 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
32rnmpt 5980 . . 3 ran (𝑥𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
43inteqi 4974 . 2 ran (𝑥𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
51, 4eqtr4di 2798 1 (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  {cab 2717  wral 3067  wrex 3076   cint 4970   ciin 5016  cmpt 5249  ran crn 5701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-int 4971  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-cnv 5708  df-dm 5710  df-rn 5711
This theorem is referenced by:  dfiin3  5993  riinint  5994  iinon  8396  cmpfi  23437
  Copyright terms: Public domain W3C validator