MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfiun3 Structured version   Visualization version   GIF version

Theorem dfiun3 5979
Description: Alternate definition of indexed union when 𝐵 is a set. (Contributed by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
dfiun3.1 𝐵 ∈ V
Assertion
Ref Expression
dfiun3 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵)

Proof of Theorem dfiun3
StepHypRef Expression
1 dfiun3g 5977 . 2 (∀𝑥𝐴 𝐵 ∈ V → 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵))
2 dfiun3.1 . . 3 𝐵 ∈ V
32a1i 11 . 2 (𝑥𝐴𝐵 ∈ V)
41, 3mprg 3066 1 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2107  Vcvv 3479   cuni 4906   ciun 4990  cmpt 5224  ran crn 5685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-cnv 5692  df-dm 5694  df-rn 5695
This theorem is referenced by:  tgrest  23168  comppfsc  23541  sigapildsys  34164  ldgenpisyslem1  34165  dstfrvunirn  34478  ctbssinf  37408  mblfinlem2  37666  volsupnfl  37673  istotbnd3  37779  sstotbnd  37783  rp-tfslim  43371  fourierdlem80  46206
  Copyright terms: Public domain W3C validator