Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfiun3 | Structured version Visualization version GIF version |
Description: Alternate definition of indexed union when 𝐵 is a set. (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
dfiun3.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
dfiun3 | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiun3g 5873 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
2 | dfiun3.1 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 2 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ V) |
4 | 1, 3 | mprg 3078 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∪ cuni 4839 ∪ ciun 4924 ↦ cmpt 5157 ran crn 5590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-cnv 5597 df-dm 5599 df-rn 5600 |
This theorem is referenced by: tgrest 22310 comppfsc 22683 sigapildsys 32130 ldgenpisyslem1 32131 dstfrvunirn 32441 ctbssinf 35577 mblfinlem2 35815 volsupnfl 35822 istotbnd3 35929 sstotbnd 35933 fourierdlem80 43727 |
Copyright terms: Public domain | W3C validator |