Step | Hyp | Ref
| Expression |
1 | | cmptop 22454 |
. . . 4
⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) |
2 | | flimfnfcls.x |
. . . . . 6
⊢ 𝑋 = ∪
𝐽 |
3 | 2 | fclsval 23067 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) = if(𝑋 = 𝑋, ∩ 𝑥 ∈ 𝐹 ((cls‘𝐽)‘𝑥), ∅)) |
4 | | eqid 2738 |
. . . . . 6
⊢ 𝑋 = 𝑋 |
5 | 4 | iftruei 4463 |
. . . . 5
⊢ if(𝑋 = 𝑋, ∩ 𝑥 ∈ 𝐹 ((cls‘𝐽)‘𝑥), ∅) = ∩ 𝑥 ∈ 𝐹 ((cls‘𝐽)‘𝑥) |
6 | 3, 5 | eqtrdi 2795 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) = ∩
𝑥 ∈ 𝐹 ((cls‘𝐽)‘𝑥)) |
7 | 1, 6 | sylan 579 |
. . 3
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) = ∩
𝑥 ∈ 𝐹 ((cls‘𝐽)‘𝑥)) |
8 | | fvex 6769 |
. . . 4
⊢
((cls‘𝐽)‘𝑥) ∈ V |
9 | 8 | dfiin3 5865 |
. . 3
⊢ ∩ 𝑥 ∈ 𝐹 ((cls‘𝐽)‘𝑥) = ∩ ran (𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥)) |
10 | 7, 9 | eqtrdi 2795 |
. 2
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) = ∩ ran (𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥))) |
11 | | simpl 482 |
. . 3
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝐽 ∈ Comp) |
12 | 11 | adantr 480 |
. . . . . . 7
⊢ (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ 𝐹) → 𝐽 ∈ Comp) |
13 | 12, 1 | syl 17 |
. . . . . 6
⊢ (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ 𝐹) → 𝐽 ∈ Top) |
14 | | filelss 22911 |
. . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝐹) → 𝑥 ⊆ 𝑋) |
15 | 14 | adantll 710 |
. . . . . 6
⊢ (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ 𝐹) → 𝑥 ⊆ 𝑋) |
16 | 2 | clscld 22106 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ 𝑋) → ((cls‘𝐽)‘𝑥) ∈ (Clsd‘𝐽)) |
17 | 13, 15, 16 | syl2anc 583 |
. . . . 5
⊢ (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ 𝐹) → ((cls‘𝐽)‘𝑥) ∈ (Clsd‘𝐽)) |
18 | 17 | fmpttd 6971 |
. . . 4
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥)):𝐹⟶(Clsd‘𝐽)) |
19 | 18 | frnd 6592 |
. . 3
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → ran (𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥)) ⊆ (Clsd‘𝐽)) |
20 | | simpr 484 |
. . . . . 6
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝐹 ∈ (Fil‘𝑋)) |
21 | 20 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ 𝐹) → 𝐹 ∈ (Fil‘𝑋)) |
22 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ 𝐹) → 𝑥 ∈ 𝐹) |
23 | 2 | clsss3 22118 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ 𝑋) → ((cls‘𝐽)‘𝑥) ⊆ 𝑋) |
24 | 13, 15, 23 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ 𝐹) → ((cls‘𝐽)‘𝑥) ⊆ 𝑋) |
25 | 2 | sscls 22115 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ 𝑋) → 𝑥 ⊆ ((cls‘𝐽)‘𝑥)) |
26 | 13, 15, 25 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ 𝐹) → 𝑥 ⊆ ((cls‘𝐽)‘𝑥)) |
27 | | filss 22912 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ∈ 𝐹 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑋 ∧ 𝑥 ⊆ ((cls‘𝐽)‘𝑥))) → ((cls‘𝐽)‘𝑥) ∈ 𝐹) |
28 | 21, 22, 24, 26, 27 | syl13anc 1370 |
. . . . . . . 8
⊢ (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ 𝐹) → ((cls‘𝐽)‘𝑥) ∈ 𝐹) |
29 | 28 | fmpttd 6971 |
. . . . . . 7
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥)):𝐹⟶𝐹) |
30 | 29 | frnd 6592 |
. . . . . 6
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → ran (𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥)) ⊆ 𝐹) |
31 | | fiss 9113 |
. . . . . 6
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ ran (𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥)) ⊆ 𝐹) → (fi‘ran (𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥))) ⊆ (fi‘𝐹)) |
32 | 20, 30, 31 | syl2anc 583 |
. . . . 5
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (fi‘ran (𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥))) ⊆ (fi‘𝐹)) |
33 | | filfi 22918 |
. . . . . 6
⊢ (𝐹 ∈ (Fil‘𝑋) → (fi‘𝐹) = 𝐹) |
34 | 20, 33 | syl 17 |
. . . . 5
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (fi‘𝐹) = 𝐹) |
35 | 32, 34 | sseqtrd 3957 |
. . . 4
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (fi‘ran (𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥))) ⊆ 𝐹) |
36 | | 0nelfil 22908 |
. . . . 5
⊢ (𝐹 ∈ (Fil‘𝑋) → ¬ ∅ ∈
𝐹) |
37 | 20, 36 | syl 17 |
. . . 4
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → ¬ ∅ ∈
𝐹) |
38 | 35, 37 | ssneldd 3920 |
. . 3
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → ¬ ∅ ∈
(fi‘ran (𝑥 ∈
𝐹 ↦ ((cls‘𝐽)‘𝑥)))) |
39 | | cmpfii 22468 |
. . 3
⊢ ((𝐽 ∈ Comp ∧ ran (𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥)) ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘ran
(𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥)))) → ∩ ran
(𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥)) ≠ ∅) |
40 | 11, 19, 38, 39 | syl3anc 1369 |
. 2
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → ∩ ran (𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥)) ≠ ∅) |
41 | 10, 40 | eqnetrd 3010 |
1
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) ≠ ∅) |