| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cmptop 23403 | . . . 4
⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) | 
| 2 |  | flimfnfcls.x | . . . . . 6
⊢ 𝑋 = ∪
𝐽 | 
| 3 | 2 | fclsval 24016 | . . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) = if(𝑋 = 𝑋, ∩ 𝑥 ∈ 𝐹 ((cls‘𝐽)‘𝑥), ∅)) | 
| 4 |  | eqid 2737 | . . . . . 6
⊢ 𝑋 = 𝑋 | 
| 5 | 4 | iftruei 4532 | . . . . 5
⊢ if(𝑋 = 𝑋, ∩ 𝑥 ∈ 𝐹 ((cls‘𝐽)‘𝑥), ∅) = ∩ 𝑥 ∈ 𝐹 ((cls‘𝐽)‘𝑥) | 
| 6 | 3, 5 | eqtrdi 2793 | . . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) = ∩
𝑥 ∈ 𝐹 ((cls‘𝐽)‘𝑥)) | 
| 7 | 1, 6 | sylan 580 | . . 3
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) = ∩
𝑥 ∈ 𝐹 ((cls‘𝐽)‘𝑥)) | 
| 8 |  | fvex 6919 | . . . 4
⊢
((cls‘𝐽)‘𝑥) ∈ V | 
| 9 | 8 | dfiin3 5981 | . . 3
⊢ ∩ 𝑥 ∈ 𝐹 ((cls‘𝐽)‘𝑥) = ∩ ran (𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥)) | 
| 10 | 7, 9 | eqtrdi 2793 | . 2
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) = ∩ ran (𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥))) | 
| 11 |  | simpl 482 | . . 3
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝐽 ∈ Comp) | 
| 12 | 11 | adantr 480 | . . . . . . 7
⊢ (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ 𝐹) → 𝐽 ∈ Comp) | 
| 13 | 12, 1 | syl 17 | . . . . . 6
⊢ (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ 𝐹) → 𝐽 ∈ Top) | 
| 14 |  | filelss 23860 | . . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝐹) → 𝑥 ⊆ 𝑋) | 
| 15 | 14 | adantll 714 | . . . . . 6
⊢ (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ 𝐹) → 𝑥 ⊆ 𝑋) | 
| 16 | 2 | clscld 23055 | . . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ 𝑋) → ((cls‘𝐽)‘𝑥) ∈ (Clsd‘𝐽)) | 
| 17 | 13, 15, 16 | syl2anc 584 | . . . . 5
⊢ (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ 𝐹) → ((cls‘𝐽)‘𝑥) ∈ (Clsd‘𝐽)) | 
| 18 | 17 | fmpttd 7135 | . . . 4
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥)):𝐹⟶(Clsd‘𝐽)) | 
| 19 | 18 | frnd 6744 | . . 3
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → ran (𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥)) ⊆ (Clsd‘𝐽)) | 
| 20 |  | simpr 484 | . . . . . 6
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝐹 ∈ (Fil‘𝑋)) | 
| 21 | 20 | adantr 480 | . . . . . . . . 9
⊢ (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ 𝐹) → 𝐹 ∈ (Fil‘𝑋)) | 
| 22 |  | simpr 484 | . . . . . . . . 9
⊢ (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ 𝐹) → 𝑥 ∈ 𝐹) | 
| 23 | 2 | clsss3 23067 | . . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ 𝑋) → ((cls‘𝐽)‘𝑥) ⊆ 𝑋) | 
| 24 | 13, 15, 23 | syl2anc 584 | . . . . . . . . 9
⊢ (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ 𝐹) → ((cls‘𝐽)‘𝑥) ⊆ 𝑋) | 
| 25 | 2 | sscls 23064 | . . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ 𝑋) → 𝑥 ⊆ ((cls‘𝐽)‘𝑥)) | 
| 26 | 13, 15, 25 | syl2anc 584 | . . . . . . . . 9
⊢ (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ 𝐹) → 𝑥 ⊆ ((cls‘𝐽)‘𝑥)) | 
| 27 |  | filss 23861 | . . . . . . . . 9
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ∈ 𝐹 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑋 ∧ 𝑥 ⊆ ((cls‘𝐽)‘𝑥))) → ((cls‘𝐽)‘𝑥) ∈ 𝐹) | 
| 28 | 21, 22, 24, 26, 27 | syl13anc 1374 | . . . . . . . 8
⊢ (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ 𝐹) → ((cls‘𝐽)‘𝑥) ∈ 𝐹) | 
| 29 | 28 | fmpttd 7135 | . . . . . . 7
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥)):𝐹⟶𝐹) | 
| 30 | 29 | frnd 6744 | . . . . . 6
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → ran (𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥)) ⊆ 𝐹) | 
| 31 |  | fiss 9464 | . . . . . 6
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ ran (𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥)) ⊆ 𝐹) → (fi‘ran (𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥))) ⊆ (fi‘𝐹)) | 
| 32 | 20, 30, 31 | syl2anc 584 | . . . . 5
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (fi‘ran (𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥))) ⊆ (fi‘𝐹)) | 
| 33 |  | filfi 23867 | . . . . . 6
⊢ (𝐹 ∈ (Fil‘𝑋) → (fi‘𝐹) = 𝐹) | 
| 34 | 20, 33 | syl 17 | . . . . 5
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (fi‘𝐹) = 𝐹) | 
| 35 | 32, 34 | sseqtrd 4020 | . . . 4
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (fi‘ran (𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥))) ⊆ 𝐹) | 
| 36 |  | 0nelfil 23857 | . . . . 5
⊢ (𝐹 ∈ (Fil‘𝑋) → ¬ ∅ ∈
𝐹) | 
| 37 | 20, 36 | syl 17 | . . . 4
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → ¬ ∅ ∈
𝐹) | 
| 38 | 35, 37 | ssneldd 3986 | . . 3
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → ¬ ∅ ∈
(fi‘ran (𝑥 ∈
𝐹 ↦ ((cls‘𝐽)‘𝑥)))) | 
| 39 |  | cmpfii 23417 | . . 3
⊢ ((𝐽 ∈ Comp ∧ ran (𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥)) ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘ran
(𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥)))) → ∩ ran
(𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥)) ≠ ∅) | 
| 40 | 11, 19, 38, 39 | syl3anc 1373 | . 2
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → ∩ ran (𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥)) ≠ ∅) | 
| 41 | 10, 40 | eqnetrd 3008 | 1
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) ≠ ∅) |