MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclscmpi Structured version   Visualization version   GIF version

Theorem fclscmpi 23380
Description: Forward direction of fclscmp 23381. Every filter clusters in a compact space. (Contributed by Mario Carneiro, 11-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypothesis
Ref Expression
flimfnfcls.x 𝑋 = 𝐽
Assertion
Ref Expression
fclscmpi ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) ≠ ∅)

Proof of Theorem fclscmpi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cmptop 22746 . . . 4 (𝐽 ∈ Comp → 𝐽 ∈ Top)
2 flimfnfcls.x . . . . . 6 𝑋 = 𝐽
32fclsval 23359 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) = if(𝑋 = 𝑋, 𝑥𝐹 ((cls‘𝐽)‘𝑥), ∅))
4 eqid 2736 . . . . . 6 𝑋 = 𝑋
54iftruei 4493 . . . . 5 if(𝑋 = 𝑋, 𝑥𝐹 ((cls‘𝐽)‘𝑥), ∅) = 𝑥𝐹 ((cls‘𝐽)‘𝑥)
63, 5eqtrdi 2792 . . . 4 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) = 𝑥𝐹 ((cls‘𝐽)‘𝑥))
71, 6sylan 580 . . 3 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) = 𝑥𝐹 ((cls‘𝐽)‘𝑥))
8 fvex 6855 . . . 4 ((cls‘𝐽)‘𝑥) ∈ V
98dfiin3 5922 . . 3 𝑥𝐹 ((cls‘𝐽)‘𝑥) = ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥))
107, 9eqtrdi 2792 . 2 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) = ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)))
11 simpl 483 . . 3 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝐽 ∈ Comp)
1211adantr 481 . . . . . . 7 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → 𝐽 ∈ Comp)
1312, 1syl 17 . . . . . 6 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → 𝐽 ∈ Top)
14 filelss 23203 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝐹) → 𝑥𝑋)
1514adantll 712 . . . . . 6 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → 𝑥𝑋)
162clscld 22398 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑥𝑋) → ((cls‘𝐽)‘𝑥) ∈ (Clsd‘𝐽))
1713, 15, 16syl2anc 584 . . . . 5 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → ((cls‘𝐽)‘𝑥) ∈ (Clsd‘𝐽))
1817fmpttd 7063 . . . 4 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)):𝐹⟶(Clsd‘𝐽))
1918frnd 6676 . . 3 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)) ⊆ (Clsd‘𝐽))
20 simpr 485 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝐹 ∈ (Fil‘𝑋))
2120adantr 481 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → 𝐹 ∈ (Fil‘𝑋))
22 simpr 485 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → 𝑥𝐹)
232clsss3 22410 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑥𝑋) → ((cls‘𝐽)‘𝑥) ⊆ 𝑋)
2413, 15, 23syl2anc 584 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → ((cls‘𝐽)‘𝑥) ⊆ 𝑋)
252sscls 22407 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑥𝑋) → 𝑥 ⊆ ((cls‘𝐽)‘𝑥))
2613, 15, 25syl2anc 584 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → 𝑥 ⊆ ((cls‘𝐽)‘𝑥))
27 filss 23204 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥𝐹 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑋𝑥 ⊆ ((cls‘𝐽)‘𝑥))) → ((cls‘𝐽)‘𝑥) ∈ 𝐹)
2821, 22, 24, 26, 27syl13anc 1372 . . . . . . . 8 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → ((cls‘𝐽)‘𝑥) ∈ 𝐹)
2928fmpttd 7063 . . . . . . 7 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)):𝐹𝐹)
3029frnd 6676 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)) ⊆ 𝐹)
31 fiss 9360 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)) ⊆ 𝐹) → (fi‘ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥))) ⊆ (fi‘𝐹))
3220, 30, 31syl2anc 584 . . . . 5 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (fi‘ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥))) ⊆ (fi‘𝐹))
33 filfi 23210 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → (fi‘𝐹) = 𝐹)
3420, 33syl 17 . . . . 5 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (fi‘𝐹) = 𝐹)
3532, 34sseqtrd 3984 . . . 4 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (fi‘ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥))) ⊆ 𝐹)
36 0nelfil 23200 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → ¬ ∅ ∈ 𝐹)
3720, 36syl 17 . . . 4 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → ¬ ∅ ∈ 𝐹)
3835, 37ssneldd 3947 . . 3 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → ¬ ∅ ∈ (fi‘ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥))))
39 cmpfii 22760 . . 3 ((𝐽 ∈ Comp ∧ ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)) ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)))) → ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)) ≠ ∅)
4011, 19, 38, 39syl3anc 1371 . 2 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)) ≠ ∅)
4110, 40eqnetrd 3011 1 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2943  wss 3910  c0 4282  ifcif 4486   cuni 4865   cint 4907   ciin 4955  cmpt 5188  ran crn 5634  cfv 6496  (class class class)co 7357  ficfi 9346  Topctop 22242  Clsdccld 22367  clsccl 22369  Compccmp 22737  Filcfil 23196   fClus cfcls 23287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1o 8412  df-er 8648  df-en 8884  df-fin 8887  df-fi 9347  df-fbas 20793  df-top 22243  df-cld 22370  df-cls 22372  df-cmp 22738  df-fil 23197  df-fcls 23292
This theorem is referenced by:  fclscmp  23381  ufilcmp  23383  relcmpcmet  24682
  Copyright terms: Public domain W3C validator