MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclscmpi Structured version   Visualization version   GIF version

Theorem fclscmpi 23950
Description: Forward direction of fclscmp 23951. Every filter clusters in a compact space. (Contributed by Mario Carneiro, 11-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypothesis
Ref Expression
flimfnfcls.x 𝑋 = 𝐽
Assertion
Ref Expression
fclscmpi ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) ≠ ∅)

Proof of Theorem fclscmpi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cmptop 23316 . . . 4 (𝐽 ∈ Comp → 𝐽 ∈ Top)
2 flimfnfcls.x . . . . . 6 𝑋 = 𝐽
32fclsval 23929 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) = if(𝑋 = 𝑋, 𝑥𝐹 ((cls‘𝐽)‘𝑥), ∅))
4 eqid 2731 . . . . . 6 𝑋 = 𝑋
54iftruei 4481 . . . . 5 if(𝑋 = 𝑋, 𝑥𝐹 ((cls‘𝐽)‘𝑥), ∅) = 𝑥𝐹 ((cls‘𝐽)‘𝑥)
63, 5eqtrdi 2782 . . . 4 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) = 𝑥𝐹 ((cls‘𝐽)‘𝑥))
71, 6sylan 580 . . 3 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) = 𝑥𝐹 ((cls‘𝐽)‘𝑥))
8 fvex 6841 . . . 4 ((cls‘𝐽)‘𝑥) ∈ V
98dfiin3 5915 . . 3 𝑥𝐹 ((cls‘𝐽)‘𝑥) = ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥))
107, 9eqtrdi 2782 . 2 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) = ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)))
11 simpl 482 . . 3 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝐽 ∈ Comp)
1211adantr 480 . . . . . . 7 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → 𝐽 ∈ Comp)
1312, 1syl 17 . . . . . 6 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → 𝐽 ∈ Top)
14 filelss 23773 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝐹) → 𝑥𝑋)
1514adantll 714 . . . . . 6 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → 𝑥𝑋)
162clscld 22968 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑥𝑋) → ((cls‘𝐽)‘𝑥) ∈ (Clsd‘𝐽))
1713, 15, 16syl2anc 584 . . . . 5 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → ((cls‘𝐽)‘𝑥) ∈ (Clsd‘𝐽))
1817fmpttd 7054 . . . 4 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)):𝐹⟶(Clsd‘𝐽))
1918frnd 6665 . . 3 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)) ⊆ (Clsd‘𝐽))
20 simpr 484 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝐹 ∈ (Fil‘𝑋))
2120adantr 480 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → 𝐹 ∈ (Fil‘𝑋))
22 simpr 484 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → 𝑥𝐹)
232clsss3 22980 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑥𝑋) → ((cls‘𝐽)‘𝑥) ⊆ 𝑋)
2413, 15, 23syl2anc 584 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → ((cls‘𝐽)‘𝑥) ⊆ 𝑋)
252sscls 22977 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑥𝑋) → 𝑥 ⊆ ((cls‘𝐽)‘𝑥))
2613, 15, 25syl2anc 584 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → 𝑥 ⊆ ((cls‘𝐽)‘𝑥))
27 filss 23774 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥𝐹 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑋𝑥 ⊆ ((cls‘𝐽)‘𝑥))) → ((cls‘𝐽)‘𝑥) ∈ 𝐹)
2821, 22, 24, 26, 27syl13anc 1374 . . . . . . . 8 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → ((cls‘𝐽)‘𝑥) ∈ 𝐹)
2928fmpttd 7054 . . . . . . 7 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)):𝐹𝐹)
3029frnd 6665 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)) ⊆ 𝐹)
31 fiss 9314 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)) ⊆ 𝐹) → (fi‘ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥))) ⊆ (fi‘𝐹))
3220, 30, 31syl2anc 584 . . . . 5 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (fi‘ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥))) ⊆ (fi‘𝐹))
33 filfi 23780 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → (fi‘𝐹) = 𝐹)
3420, 33syl 17 . . . . 5 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (fi‘𝐹) = 𝐹)
3532, 34sseqtrd 3966 . . . 4 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (fi‘ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥))) ⊆ 𝐹)
36 0nelfil 23770 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → ¬ ∅ ∈ 𝐹)
3720, 36syl 17 . . . 4 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → ¬ ∅ ∈ 𝐹)
3835, 37ssneldd 3932 . . 3 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → ¬ ∅ ∈ (fi‘ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥))))
39 cmpfii 23330 . . 3 ((𝐽 ∈ Comp ∧ ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)) ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)))) → ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)) ≠ ∅)
4011, 19, 38, 39syl3anc 1373 . 2 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)) ≠ ∅)
4110, 40eqnetrd 2995 1 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wss 3897  c0 4282  ifcif 4474   cuni 4858   cint 4897   ciin 4942  cmpt 5174  ran crn 5620  cfv 6487  (class class class)co 7352  ficfi 9300  Topctop 22814  Clsdccld 22937  clsccl 22939  Compccmp 23307  Filcfil 23766   fClus cfcls 23857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1o 8391  df-2o 8392  df-en 8876  df-dom 8877  df-fin 8879  df-fi 9301  df-fbas 21294  df-top 22815  df-cld 22940  df-cls 22942  df-cmp 23308  df-fil 23767  df-fcls 23862
This theorem is referenced by:  fclscmp  23951  ufilcmp  23953  relcmpcmet  25251
  Copyright terms: Public domain W3C validator