MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclscmpi Structured version   Visualization version   GIF version

Theorem fclscmpi 23916
Description: Forward direction of fclscmp 23917. Every filter clusters in a compact space. (Contributed by Mario Carneiro, 11-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypothesis
Ref Expression
flimfnfcls.x 𝑋 = 𝐽
Assertion
Ref Expression
fclscmpi ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) ≠ ∅)

Proof of Theorem fclscmpi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cmptop 23282 . . . 4 (𝐽 ∈ Comp → 𝐽 ∈ Top)
2 flimfnfcls.x . . . . . 6 𝑋 = 𝐽
32fclsval 23895 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) = if(𝑋 = 𝑋, 𝑥𝐹 ((cls‘𝐽)‘𝑥), ∅))
4 eqid 2729 . . . . . 6 𝑋 = 𝑋
54iftruei 4495 . . . . 5 if(𝑋 = 𝑋, 𝑥𝐹 ((cls‘𝐽)‘𝑥), ∅) = 𝑥𝐹 ((cls‘𝐽)‘𝑥)
63, 5eqtrdi 2780 . . . 4 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) = 𝑥𝐹 ((cls‘𝐽)‘𝑥))
71, 6sylan 580 . . 3 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) = 𝑥𝐹 ((cls‘𝐽)‘𝑥))
8 fvex 6871 . . . 4 ((cls‘𝐽)‘𝑥) ∈ V
98dfiin3 5934 . . 3 𝑥𝐹 ((cls‘𝐽)‘𝑥) = ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥))
107, 9eqtrdi 2780 . 2 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) = ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)))
11 simpl 482 . . 3 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝐽 ∈ Comp)
1211adantr 480 . . . . . . 7 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → 𝐽 ∈ Comp)
1312, 1syl 17 . . . . . 6 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → 𝐽 ∈ Top)
14 filelss 23739 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝐹) → 𝑥𝑋)
1514adantll 714 . . . . . 6 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → 𝑥𝑋)
162clscld 22934 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑥𝑋) → ((cls‘𝐽)‘𝑥) ∈ (Clsd‘𝐽))
1713, 15, 16syl2anc 584 . . . . 5 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → ((cls‘𝐽)‘𝑥) ∈ (Clsd‘𝐽))
1817fmpttd 7087 . . . 4 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)):𝐹⟶(Clsd‘𝐽))
1918frnd 6696 . . 3 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)) ⊆ (Clsd‘𝐽))
20 simpr 484 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝐹 ∈ (Fil‘𝑋))
2120adantr 480 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → 𝐹 ∈ (Fil‘𝑋))
22 simpr 484 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → 𝑥𝐹)
232clsss3 22946 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑥𝑋) → ((cls‘𝐽)‘𝑥) ⊆ 𝑋)
2413, 15, 23syl2anc 584 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → ((cls‘𝐽)‘𝑥) ⊆ 𝑋)
252sscls 22943 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑥𝑋) → 𝑥 ⊆ ((cls‘𝐽)‘𝑥))
2613, 15, 25syl2anc 584 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → 𝑥 ⊆ ((cls‘𝐽)‘𝑥))
27 filss 23740 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥𝐹 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑋𝑥 ⊆ ((cls‘𝐽)‘𝑥))) → ((cls‘𝐽)‘𝑥) ∈ 𝐹)
2821, 22, 24, 26, 27syl13anc 1374 . . . . . . . 8 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → ((cls‘𝐽)‘𝑥) ∈ 𝐹)
2928fmpttd 7087 . . . . . . 7 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)):𝐹𝐹)
3029frnd 6696 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)) ⊆ 𝐹)
31 fiss 9375 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)) ⊆ 𝐹) → (fi‘ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥))) ⊆ (fi‘𝐹))
3220, 30, 31syl2anc 584 . . . . 5 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (fi‘ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥))) ⊆ (fi‘𝐹))
33 filfi 23746 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → (fi‘𝐹) = 𝐹)
3420, 33syl 17 . . . . 5 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (fi‘𝐹) = 𝐹)
3532, 34sseqtrd 3983 . . . 4 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (fi‘ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥))) ⊆ 𝐹)
36 0nelfil 23736 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → ¬ ∅ ∈ 𝐹)
3720, 36syl 17 . . . 4 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → ¬ ∅ ∈ 𝐹)
3835, 37ssneldd 3949 . . 3 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → ¬ ∅ ∈ (fi‘ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥))))
39 cmpfii 23296 . . 3 ((𝐽 ∈ Comp ∧ ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)) ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)))) → ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)) ≠ ∅)
4011, 19, 38, 39syl3anc 1373 . 2 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)) ≠ ∅)
4110, 40eqnetrd 2992 1 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wss 3914  c0 4296  ifcif 4488   cuni 4871   cint 4910   ciin 4956  cmpt 5188  ran crn 5639  cfv 6511  (class class class)co 7387  ficfi 9361  Topctop 22780  Clsdccld 22903  clsccl 22905  Compccmp 23273  Filcfil 23732   fClus cfcls 23823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1o 8434  df-2o 8435  df-en 8919  df-dom 8920  df-fin 8922  df-fi 9362  df-fbas 21261  df-top 22781  df-cld 22906  df-cls 22908  df-cmp 23274  df-fil 23733  df-fcls 23828
This theorem is referenced by:  fclscmp  23917  ufilcmp  23919  relcmpcmet  25218
  Copyright terms: Public domain W3C validator