MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclscmpi Structured version   Visualization version   GIF version

Theorem fclscmpi 24037
Description: Forward direction of fclscmp 24038. Every filter clusters in a compact space. (Contributed by Mario Carneiro, 11-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypothesis
Ref Expression
flimfnfcls.x 𝑋 = 𝐽
Assertion
Ref Expression
fclscmpi ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) ≠ ∅)

Proof of Theorem fclscmpi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cmptop 23403 . . . 4 (𝐽 ∈ Comp → 𝐽 ∈ Top)
2 flimfnfcls.x . . . . . 6 𝑋 = 𝐽
32fclsval 24016 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) = if(𝑋 = 𝑋, 𝑥𝐹 ((cls‘𝐽)‘𝑥), ∅))
4 eqid 2737 . . . . . 6 𝑋 = 𝑋
54iftruei 4532 . . . . 5 if(𝑋 = 𝑋, 𝑥𝐹 ((cls‘𝐽)‘𝑥), ∅) = 𝑥𝐹 ((cls‘𝐽)‘𝑥)
63, 5eqtrdi 2793 . . . 4 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) = 𝑥𝐹 ((cls‘𝐽)‘𝑥))
71, 6sylan 580 . . 3 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) = 𝑥𝐹 ((cls‘𝐽)‘𝑥))
8 fvex 6919 . . . 4 ((cls‘𝐽)‘𝑥) ∈ V
98dfiin3 5981 . . 3 𝑥𝐹 ((cls‘𝐽)‘𝑥) = ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥))
107, 9eqtrdi 2793 . 2 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) = ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)))
11 simpl 482 . . 3 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝐽 ∈ Comp)
1211adantr 480 . . . . . . 7 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → 𝐽 ∈ Comp)
1312, 1syl 17 . . . . . 6 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → 𝐽 ∈ Top)
14 filelss 23860 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝐹) → 𝑥𝑋)
1514adantll 714 . . . . . 6 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → 𝑥𝑋)
162clscld 23055 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑥𝑋) → ((cls‘𝐽)‘𝑥) ∈ (Clsd‘𝐽))
1713, 15, 16syl2anc 584 . . . . 5 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → ((cls‘𝐽)‘𝑥) ∈ (Clsd‘𝐽))
1817fmpttd 7135 . . . 4 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)):𝐹⟶(Clsd‘𝐽))
1918frnd 6744 . . 3 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)) ⊆ (Clsd‘𝐽))
20 simpr 484 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝐹 ∈ (Fil‘𝑋))
2120adantr 480 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → 𝐹 ∈ (Fil‘𝑋))
22 simpr 484 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → 𝑥𝐹)
232clsss3 23067 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑥𝑋) → ((cls‘𝐽)‘𝑥) ⊆ 𝑋)
2413, 15, 23syl2anc 584 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → ((cls‘𝐽)‘𝑥) ⊆ 𝑋)
252sscls 23064 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑥𝑋) → 𝑥 ⊆ ((cls‘𝐽)‘𝑥))
2613, 15, 25syl2anc 584 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → 𝑥 ⊆ ((cls‘𝐽)‘𝑥))
27 filss 23861 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥𝐹 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑋𝑥 ⊆ ((cls‘𝐽)‘𝑥))) → ((cls‘𝐽)‘𝑥) ∈ 𝐹)
2821, 22, 24, 26, 27syl13anc 1374 . . . . . . . 8 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → ((cls‘𝐽)‘𝑥) ∈ 𝐹)
2928fmpttd 7135 . . . . . . 7 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)):𝐹𝐹)
3029frnd 6744 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)) ⊆ 𝐹)
31 fiss 9464 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)) ⊆ 𝐹) → (fi‘ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥))) ⊆ (fi‘𝐹))
3220, 30, 31syl2anc 584 . . . . 5 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (fi‘ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥))) ⊆ (fi‘𝐹))
33 filfi 23867 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → (fi‘𝐹) = 𝐹)
3420, 33syl 17 . . . . 5 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (fi‘𝐹) = 𝐹)
3532, 34sseqtrd 4020 . . . 4 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (fi‘ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥))) ⊆ 𝐹)
36 0nelfil 23857 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → ¬ ∅ ∈ 𝐹)
3720, 36syl 17 . . . 4 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → ¬ ∅ ∈ 𝐹)
3835, 37ssneldd 3986 . . 3 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → ¬ ∅ ∈ (fi‘ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥))))
39 cmpfii 23417 . . 3 ((𝐽 ∈ Comp ∧ ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)) ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)))) → ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)) ≠ ∅)
4011, 19, 38, 39syl3anc 1373 . 2 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)) ≠ ∅)
4110, 40eqnetrd 3008 1 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  wss 3951  c0 4333  ifcif 4525   cuni 4907   cint 4946   ciin 4992  cmpt 5225  ran crn 5686  cfv 6561  (class class class)co 7431  ficfi 9450  Topctop 22899  Clsdccld 23024  clsccl 23026  Compccmp 23394  Filcfil 23853   fClus cfcls 23944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1o 8506  df-2o 8507  df-en 8986  df-dom 8987  df-fin 8989  df-fi 9451  df-fbas 21361  df-top 22900  df-cld 23027  df-cls 23029  df-cmp 23395  df-fil 23854  df-fcls 23949
This theorem is referenced by:  fclscmp  24038  ufilcmp  24040  relcmpcmet  25352
  Copyright terms: Public domain W3C validator