| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lenlt | Structured version Visualization version GIF version | ||
| Description: 'Less than or equal to' expressed in terms of 'less than'. (Contributed by NM, 13-May-1999.) |
| Ref | Expression |
|---|---|
| lenlt | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr 11227 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 2 | rexr 11227 | . 2 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
| 3 | xrlenlt 11246 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5110 ℝcr 11074 ℝ*cxr 11214 < clt 11215 ≤ cle 11216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-xr 11219 df-le 11221 |
| This theorem is referenced by: ltnle 11260 letri3 11266 leloe 11267 eqlelt 11268 ne0gt0 11286 lelttric 11288 lenlti 11301 lenltd 11327 ltaddsub 11659 leord1 11712 lediv1 12055 suprleub 12156 dfinfre 12171 infregelb 12174 nnge1 12221 nnnlt1 12225 avgle1 12429 avgle2 12430 nn0nlt0 12475 recnz 12616 btwnnz 12617 prime 12622 indstr 12882 uzsupss 12906 zbtwnre 12912 rpneg 12992 2resupmax 13155 fzn 13508 nelfzo 13632 fzonlt0 13650 fllt 13775 flflp1 13776 modifeq2int 13905 om2uzlt2i 13923 fsuppmapnn0fiub0 13965 suppssfz 13966 leexp2 14143 discr 14212 bcval4 14279 ccatsymb 14554 swrd0 14630 sqrtneglem 15239 harmonic 15832 efle 16093 dvdsle 16287 dfgcd2 16523 lcmf 16610 infpnlem1 16888 pgpssslw 19551 gsummoncoe1 22202 mp2pm2mplem4 22703 dvferm1 25896 dvferm2 25898 dgrlt 26179 logleb 26519 argrege0 26527 ellogdm 26555 cxple 26611 cxple3 26617 asinneg 26803 birthdaylem3 26870 ppieq0 27093 chpeq0 27126 chteq0 27127 lgsval2lem 27225 lgsneg 27239 lgsdilem 27242 gausslemma2dlem1a 27283 gausslemma2dlem3 27286 ostth2lem1 27536 ostth3 27556 rusgrnumwwlks 29911 clwlkclwwlklem2a 29934 frgrreg 30330 friendship 30335 nmounbi 30712 nmlno0lem 30729 nmlnop0iALT 31931 supfz 35723 inffz 35724 fz0n 35725 nn0prpw 36318 leceifl 37610 poimirlem15 37636 poimirlem16 37637 poimirlem17 37638 poimirlem20 37641 poimirlem24 37645 poimirlem31 37652 poimirlem32 37653 ftc1anclem1 37694 nninfnub 37752 ellz1 42762 rencldnfilem 42815 icccncfext 45892 subsubelfzo0 47331 digexp 48600 reorelicc 48703 |
| Copyright terms: Public domain | W3C validator |