Colors of
variables: wff
setvar class |
Syntax hints: ¬ wn 3 → wi 4
↔ wb 205 ∧
wa 397 ∈ wcel 2107
class class class wbr 5148 ℝcr 11106
ℝ*cxr 11244
< clt 11245 ≤
cle 11246 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-cnv 5684 df-xr 11249 df-le 11251 |
This theorem is referenced by: ltnle
11290 letri3
11296 leloe
11297 eqlelt
11298 ne0gt0
11316 lelttric
11318 lenlti
11331 lenltd
11357 ltaddsub
11685 leord1
11738 lediv1
12076 suprleub
12177 dfinfre
12192 infregelb
12195 nnge1
12237 nnnlt1
12241 avgle1
12449 avgle2
12450 nn0nlt0
12495 recnz
12634 btwnnz
12635 prime
12640 indstr
12897 uzsupss
12921 zbtwnre
12927 rpneg
13003 2resupmax
13164 fzn
13514 nelfzo
13634 fzonlt0
13652 fllt
13768 flflp1
13769 modifeq2int
13895 om2uzlt2i
13913 fsuppmapnn0fiub0
13955 suppssfz
13956 leexp2
14133 discr
14200 bcval4
14264 ccatsymb
14529 swrd0
14605 sqrtneglem
15210 harmonic
15802 efle
16058 dvdsle
16250 dfgcd2
16485 lcmf
16567 infpnlem1
16840 pgpssslw
19477 gsummoncoe1
21820 mp2pm2mplem4
22303 dvferm1
25494 dvferm2
25496 dgrlt
25772 logleb
26103 argrege0
26111 ellogdm
26139 cxple
26195 cxple3
26201 asinneg
26381 birthdaylem3
26448 ppieq0
26670 chpeq0
26701 chteq0
26702 lgsval2lem
26800 lgsneg
26814 lgsdilem
26817 gausslemma2dlem1a
26858 gausslemma2dlem3
26861 ostth2lem1
27111 ostth3
27131 rusgrnumwwlks
29218 clwlkclwwlklem2a
29241 frgrreg
29637 friendship
29642 nmounbi
30017 nmlno0lem
30034 nmlnop0iALT
31236 supfz
34687 inffz
34688 fz0n
34689 nn0prpw
35197 leceifl
36466 poimirlem15
36492 poimirlem16
36493 poimirlem17
36494 poimirlem20
36497 poimirlem24
36501 poimirlem31
36508 poimirlem32
36509 ftc1anclem1
36550 nninfnub
36608 metakunt22
40995 ellz1
41491 rencldnfilem
41544 icccncfext
44590 subsubelfzo0
46021 digexp
47247 reorelicc
47350 |