| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lenlt | Structured version Visualization version GIF version | ||
| Description: 'Less than or equal to' expressed in terms of 'less than'. (Contributed by NM, 13-May-1999.) |
| Ref | Expression |
|---|---|
| lenlt | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr 11279 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 2 | rexr 11279 | . 2 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
| 3 | xrlenlt 11298 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 class class class wbr 5119 ℝcr 11126 ℝ*cxr 11266 < clt 11267 ≤ cle 11268 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-cnv 5662 df-xr 11271 df-le 11273 |
| This theorem is referenced by: ltnle 11312 letri3 11318 leloe 11319 eqlelt 11320 ne0gt0 11338 lelttric 11340 lenlti 11353 lenltd 11379 ltaddsub 11709 leord1 11762 lediv1 12105 suprleub 12206 dfinfre 12221 infregelb 12224 nnge1 12266 nnnlt1 12270 avgle1 12479 avgle2 12480 nn0nlt0 12525 recnz 12666 btwnnz 12667 prime 12672 indstr 12930 uzsupss 12954 zbtwnre 12960 rpneg 13039 2resupmax 13202 fzn 13555 nelfzo 13679 fzonlt0 13697 fllt 13821 flflp1 13822 modifeq2int 13949 om2uzlt2i 13967 fsuppmapnn0fiub0 14009 suppssfz 14010 leexp2 14187 discr 14256 bcval4 14323 ccatsymb 14598 swrd0 14674 sqrtneglem 15283 harmonic 15873 efle 16134 dvdsle 16327 dfgcd2 16563 lcmf 16650 infpnlem1 16928 pgpssslw 19593 gsummoncoe1 22244 mp2pm2mplem4 22745 dvferm1 25939 dvferm2 25941 dgrlt 26222 logleb 26562 argrege0 26570 ellogdm 26598 cxple 26654 cxple3 26660 asinneg 26846 birthdaylem3 26913 ppieq0 27136 chpeq0 27169 chteq0 27170 lgsval2lem 27268 lgsneg 27282 lgsdilem 27285 gausslemma2dlem1a 27326 gausslemma2dlem3 27329 ostth2lem1 27579 ostth3 27599 rusgrnumwwlks 29902 clwlkclwwlklem2a 29925 frgrreg 30321 friendship 30326 nmounbi 30703 nmlno0lem 30720 nmlnop0iALT 31922 supfz 35692 inffz 35693 fz0n 35694 nn0prpw 36287 leceifl 37579 poimirlem15 37605 poimirlem16 37606 poimirlem17 37607 poimirlem20 37610 poimirlem24 37614 poimirlem31 37621 poimirlem32 37622 ftc1anclem1 37663 nninfnub 37721 metakunt22 42185 ellz1 42737 rencldnfilem 42790 icccncfext 45864 subsubelfzo0 47303 digexp 48535 reorelicc 48638 |
| Copyright terms: Public domain | W3C validator |