| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lenlt | Structured version Visualization version GIF version | ||
| Description: 'Less than or equal to' expressed in terms of 'less than'. (Contributed by NM, 13-May-1999.) |
| Ref | Expression |
|---|---|
| lenlt | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr 11196 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 2 | rexr 11196 | . 2 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
| 3 | xrlenlt 11215 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5102 ℝcr 11043 ℝ*cxr 11183 < clt 11184 ≤ cle 11185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-cnv 5639 df-xr 11188 df-le 11190 |
| This theorem is referenced by: ltnle 11229 letri3 11235 leloe 11236 eqlelt 11237 ne0gt0 11255 lelttric 11257 lenlti 11270 lenltd 11296 ltaddsub 11628 leord1 11681 lediv1 12024 suprleub 12125 dfinfre 12140 infregelb 12143 nnge1 12190 nnnlt1 12194 avgle1 12398 avgle2 12399 nn0nlt0 12444 recnz 12585 btwnnz 12586 prime 12591 indstr 12851 uzsupss 12875 zbtwnre 12881 rpneg 12961 2resupmax 13124 fzn 13477 nelfzo 13601 fzonlt0 13619 fllt 13744 flflp1 13745 modifeq2int 13874 om2uzlt2i 13892 fsuppmapnn0fiub0 13934 suppssfz 13935 leexp2 14112 discr 14181 bcval4 14248 ccatsymb 14523 swrd0 14599 sqrtneglem 15208 harmonic 15801 efle 16062 dvdsle 16256 dfgcd2 16492 lcmf 16579 infpnlem1 16857 pgpssslw 19528 gsummoncoe1 22228 mp2pm2mplem4 22729 dvferm1 25922 dvferm2 25924 dgrlt 26205 logleb 26545 argrege0 26553 ellogdm 26581 cxple 26637 cxple3 26643 asinneg 26829 birthdaylem3 26896 ppieq0 27119 chpeq0 27152 chteq0 27153 lgsval2lem 27251 lgsneg 27265 lgsdilem 27268 gausslemma2dlem1a 27309 gausslemma2dlem3 27312 ostth2lem1 27562 ostth3 27582 rusgrnumwwlks 29954 clwlkclwwlklem2a 29977 frgrreg 30373 friendship 30378 nmounbi 30755 nmlno0lem 30772 nmlnop0iALT 31974 supfz 35709 inffz 35710 fz0n 35711 nn0prpw 36304 leceifl 37596 poimirlem15 37622 poimirlem16 37623 poimirlem17 37624 poimirlem20 37627 poimirlem24 37631 poimirlem31 37638 poimirlem32 37639 ftc1anclem1 37680 nninfnub 37738 ellz1 42748 rencldnfilem 42801 icccncfext 45878 subsubelfzo0 47320 digexp 48589 reorelicc 48692 |
| Copyright terms: Public domain | W3C validator |