Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lenlt | Structured version Visualization version GIF version |
Description: 'Less than or equal to' expressed in terms of 'less than'. (Contributed by NM, 13-May-1999.) |
Ref | Expression |
---|---|
lenlt | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 11067 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
2 | rexr 11067 | . 2 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
3 | xrlenlt 11086 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
4 | 1, 2, 3 | syl2an 597 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2104 class class class wbr 5081 ℝcr 10916 ℝ*cxr 11054 < clt 11055 ≤ cle 11056 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-xp 5606 df-cnv 5608 df-xr 11059 df-le 11061 |
This theorem is referenced by: ltnle 11100 letri3 11106 leloe 11107 eqlelt 11108 ne0gt0 11126 lelttric 11128 lenlti 11141 lenltd 11167 ltaddsub 11495 leord1 11548 lediv1 11886 suprleub 11987 dfinfre 12002 infregelb 12005 nnge1 12047 nnnlt1 12051 avgle1 12259 avgle2 12260 nn0nlt0 12305 recnz 12441 btwnnz 12442 prime 12447 indstr 12702 uzsupss 12726 zbtwnre 12732 rpneg 12808 2resupmax 12968 fzn 13318 nelfzo 13438 fzonlt0 13456 fllt 13572 flflp1 13573 modifeq2int 13699 om2uzlt2i 13717 fsuppmapnn0fiub0 13759 suppssfz 13760 leexp2 13935 discr 14001 bcval4 14067 ccatsymb 14332 swrd0 14416 sqrtneglem 15023 harmonic 15616 efle 15872 dvdsle 16064 dfgcd2 16299 lcmf 16383 infpnlem1 16656 pgpssslw 19264 gsummoncoe1 21520 mp2pm2mplem4 22003 dvferm1 25194 dvferm2 25196 dgrlt 25472 logleb 25803 argrege0 25811 ellogdm 25839 cxple 25895 cxple3 25901 asinneg 26081 birthdaylem3 26148 ppieq0 26370 chpeq0 26401 chteq0 26402 lgsval2lem 26500 lgsneg 26514 lgsdilem 26517 gausslemma2dlem1a 26558 gausslemma2dlem3 26561 ostth2lem1 26811 ostth3 26831 rusgrnumwwlks 28384 clwlkclwwlklem2a 28407 frgrreg 28803 friendship 28808 nmounbi 29183 nmlno0lem 29200 nmlnop0iALT 30402 supfz 33739 inffz 33740 fz0n 33741 nn0prpw 34557 leceifl 35810 poimirlem15 35836 poimirlem16 35837 poimirlem17 35838 poimirlem20 35841 poimirlem24 35845 poimirlem31 35852 poimirlem32 35853 ftc1anclem1 35894 nninfnub 35953 metakunt22 40188 ellz1 40626 rencldnfilem 40679 icccncfext 43477 subsubelfzo0 44876 digexp 46011 reorelicc 46114 |
Copyright terms: Public domain | W3C validator |