Colors of
variables: wff
setvar class |
Syntax hints: ¬ wn 3 → wi 4
↔ wb 205 ∧
wa 397 ∈ wcel 2107
class class class wbr 5149 ℝcr 11109
ℝ*cxr 11247
< clt 11248 ≤
cle 11249 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-cnv 5685 df-xr 11252 df-le 11254 |
This theorem is referenced by: ltnle
11293 letri3
11299 leloe
11300 eqlelt
11301 ne0gt0
11319 lelttric
11321 lenlti
11334 lenltd
11360 ltaddsub
11688 leord1
11741 lediv1
12079 suprleub
12180 dfinfre
12195 infregelb
12198 nnge1
12240 nnnlt1
12244 avgle1
12452 avgle2
12453 nn0nlt0
12498 recnz
12637 btwnnz
12638 prime
12643 indstr
12900 uzsupss
12924 zbtwnre
12930 rpneg
13006 2resupmax
13167 fzn
13517 nelfzo
13637 fzonlt0
13655 fllt
13771 flflp1
13772 modifeq2int
13898 om2uzlt2i
13916 fsuppmapnn0fiub0
13958 suppssfz
13959 leexp2
14136 discr
14203 bcval4
14267 ccatsymb
14532 swrd0
14608 sqrtneglem
15213 harmonic
15805 efle
16061 dvdsle
16253 dfgcd2
16488 lcmf
16570 infpnlem1
16843 pgpssslw
19482 gsummoncoe1
21828 mp2pm2mplem4
22311 dvferm1
25502 dvferm2
25504 dgrlt
25780 logleb
26111 argrege0
26119 ellogdm
26147 cxple
26203 cxple3
26209 asinneg
26391 birthdaylem3
26458 ppieq0
26680 chpeq0
26711 chteq0
26712 lgsval2lem
26810 lgsneg
26824 lgsdilem
26827 gausslemma2dlem1a
26868 gausslemma2dlem3
26871 ostth2lem1
27121 ostth3
27141 rusgrnumwwlks
29228 clwlkclwwlklem2a
29251 frgrreg
29647 friendship
29652 nmounbi
30029 nmlno0lem
30046 nmlnop0iALT
31248 supfz
34698 inffz
34699 fz0n
34700 nn0prpw
35208 leceifl
36477 poimirlem15
36503 poimirlem16
36504 poimirlem17
36505 poimirlem20
36508 poimirlem24
36512 poimirlem31
36519 poimirlem32
36520 ftc1anclem1
36561 nninfnub
36619 metakunt22
41006 ellz1
41505 rencldnfilem
41558 icccncfext
44603 subsubelfzo0
46034 digexp
47293 reorelicc
47396 |