![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lenlt | Structured version Visualization version GIF version |
Description: 'Less than or equal to' expressed in terms of 'less than'. (Contributed by NM, 13-May-1999.) |
Ref | Expression |
---|---|
lenlt | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 11304 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
2 | rexr 11304 | . 2 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
3 | xrlenlt 11323 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2105 class class class wbr 5147 ℝcr 11151 ℝ*cxr 11291 < clt 11292 ≤ cle 11293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-xp 5694 df-cnv 5696 df-xr 11296 df-le 11298 |
This theorem is referenced by: ltnle 11337 letri3 11343 leloe 11344 eqlelt 11345 ne0gt0 11363 lelttric 11365 lenlti 11378 lenltd 11404 ltaddsub 11734 leord1 11787 lediv1 12130 suprleub 12231 dfinfre 12246 infregelb 12249 nnge1 12291 nnnlt1 12295 avgle1 12503 avgle2 12504 nn0nlt0 12549 recnz 12690 btwnnz 12691 prime 12696 indstr 12955 uzsupss 12979 zbtwnre 12985 rpneg 13064 2resupmax 13226 fzn 13576 nelfzo 13700 fzonlt0 13718 fllt 13842 flflp1 13843 modifeq2int 13970 om2uzlt2i 13988 fsuppmapnn0fiub0 14030 suppssfz 14031 leexp2 14207 discr 14275 bcval4 14342 ccatsymb 14616 swrd0 14692 sqrtneglem 15301 harmonic 15891 efle 16150 dvdsle 16343 dfgcd2 16579 lcmf 16666 infpnlem1 16943 pgpssslw 19646 gsummoncoe1 22327 mp2pm2mplem4 22830 dvferm1 26037 dvferm2 26039 dgrlt 26320 logleb 26659 argrege0 26667 ellogdm 26695 cxple 26751 cxple3 26757 asinneg 26943 birthdaylem3 27010 ppieq0 27233 chpeq0 27266 chteq0 27267 lgsval2lem 27365 lgsneg 27379 lgsdilem 27382 gausslemma2dlem1a 27423 gausslemma2dlem3 27426 ostth2lem1 27676 ostth3 27696 rusgrnumwwlks 30003 clwlkclwwlklem2a 30026 frgrreg 30422 friendship 30427 nmounbi 30804 nmlno0lem 30821 nmlnop0iALT 32023 supfz 35708 inffz 35709 fz0n 35710 nn0prpw 36305 leceifl 37595 poimirlem15 37621 poimirlem16 37622 poimirlem17 37623 poimirlem20 37626 poimirlem24 37630 poimirlem31 37637 poimirlem32 37638 ftc1anclem1 37679 nninfnub 37737 metakunt22 42207 ellz1 42754 rencldnfilem 42807 icccncfext 45842 subsubelfzo0 47275 digexp 48456 reorelicc 48559 |
Copyright terms: Public domain | W3C validator |