| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lenlt | Structured version Visualization version GIF version | ||
| Description: 'Less than or equal to' expressed in terms of 'less than'. (Contributed by NM, 13-May-1999.) |
| Ref | Expression |
|---|---|
| lenlt | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr 11220 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 2 | rexr 11220 | . 2 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
| 3 | xrlenlt 11239 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5107 ℝcr 11067 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-xr 11212 df-le 11214 |
| This theorem is referenced by: ltnle 11253 letri3 11259 leloe 11260 eqlelt 11261 ne0gt0 11279 lelttric 11281 lenlti 11294 lenltd 11320 ltaddsub 11652 leord1 11705 lediv1 12048 suprleub 12149 dfinfre 12164 infregelb 12167 nnge1 12214 nnnlt1 12218 avgle1 12422 avgle2 12423 nn0nlt0 12468 recnz 12609 btwnnz 12610 prime 12615 indstr 12875 uzsupss 12899 zbtwnre 12905 rpneg 12985 2resupmax 13148 fzn 13501 nelfzo 13625 fzonlt0 13643 fllt 13768 flflp1 13769 modifeq2int 13898 om2uzlt2i 13916 fsuppmapnn0fiub0 13958 suppssfz 13959 leexp2 14136 discr 14205 bcval4 14272 ccatsymb 14547 swrd0 14623 sqrtneglem 15232 harmonic 15825 efle 16086 dvdsle 16280 dfgcd2 16516 lcmf 16603 infpnlem1 16881 pgpssslw 19544 gsummoncoe1 22195 mp2pm2mplem4 22696 dvferm1 25889 dvferm2 25891 dgrlt 26172 logleb 26512 argrege0 26520 ellogdm 26548 cxple 26604 cxple3 26610 asinneg 26796 birthdaylem3 26863 ppieq0 27086 chpeq0 27119 chteq0 27120 lgsval2lem 27218 lgsneg 27232 lgsdilem 27235 gausslemma2dlem1a 27276 gausslemma2dlem3 27279 ostth2lem1 27529 ostth3 27549 rusgrnumwwlks 29904 clwlkclwwlklem2a 29927 frgrreg 30323 friendship 30328 nmounbi 30705 nmlno0lem 30722 nmlnop0iALT 31924 supfz 35716 inffz 35717 fz0n 35718 nn0prpw 36311 leceifl 37603 poimirlem15 37629 poimirlem16 37630 poimirlem17 37631 poimirlem20 37634 poimirlem24 37638 poimirlem31 37645 poimirlem32 37646 ftc1anclem1 37687 nninfnub 37745 ellz1 42755 rencldnfilem 42808 icccncfext 45885 subsubelfzo0 47327 digexp 48596 reorelicc 48699 |
| Copyright terms: Public domain | W3C validator |