Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lenlt | Structured version Visualization version GIF version |
Description: 'Less than or equal to' expressed in terms of 'less than'. (Contributed by NM, 13-May-1999.) |
Ref | Expression |
---|---|
lenlt | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 11005 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
2 | rexr 11005 | . 2 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
3 | xrlenlt 11024 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
4 | 1, 2, 3 | syl2an 595 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2109 class class class wbr 5078 ℝcr 10854 ℝ*cxr 10992 < clt 10993 ≤ cle 10994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-xp 5594 df-cnv 5596 df-xr 10997 df-le 10999 |
This theorem is referenced by: ltnle 11038 letri3 11044 leloe 11045 eqlelt 11046 ne0gt0 11063 lelttric 11065 lenlti 11078 lenltd 11104 ltaddsub 11432 leord1 11485 lediv1 11823 suprleub 11924 dfinfre 11939 infregelb 11942 nnge1 11984 nnnlt1 11988 avgle1 12196 avgle2 12197 nn0nlt0 12242 recnz 12378 btwnnz 12379 prime 12384 indstr 12638 uzsupss 12662 zbtwnre 12668 rpneg 12744 2resupmax 12904 fzn 13254 nelfzo 13374 fzonlt0 13391 fllt 13507 flflp1 13508 modifeq2int 13634 om2uzlt2i 13652 fsuppmapnn0fiub0 13694 suppssfz 13695 leexp2 13870 discr 13936 bcval4 14002 ccatsymb 14268 swrd0 14352 sqrtneglem 14959 harmonic 15552 efle 15808 dvdsle 16000 dfgcd2 16235 lcmf 16319 infpnlem1 16592 pgpssslw 19200 gsummoncoe1 21456 mp2pm2mplem4 21939 dvferm1 25130 dvferm2 25132 dgrlt 25408 logleb 25739 argrege0 25747 ellogdm 25775 cxple 25831 cxple3 25837 asinneg 26017 birthdaylem3 26084 ppieq0 26306 chpeq0 26337 chteq0 26338 lgsval2lem 26436 lgsneg 26450 lgsdilem 26453 gausslemma2dlem1a 26494 gausslemma2dlem3 26497 ostth2lem1 26747 ostth3 26767 rusgrnumwwlks 28318 clwlkclwwlklem2a 28341 frgrreg 28737 friendship 28742 nmounbi 29117 nmlno0lem 29134 nmlnop0iALT 30336 supfz 33673 inffz 33674 fz0n 33675 nn0prpw 34491 leceifl 35745 poimirlem15 35771 poimirlem16 35772 poimirlem17 35773 poimirlem20 35776 poimirlem24 35780 poimirlem31 35787 poimirlem32 35788 ftc1anclem1 35829 nninfnub 35888 metakunt22 40126 ellz1 40569 rencldnfilem 40622 icccncfext 43382 subsubelfzo0 44770 digexp 45905 reorelicc 46008 |
Copyright terms: Public domain | W3C validator |