Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lenlt | Structured version Visualization version GIF version |
Description: 'Less than or equal to' expressed in terms of 'less than'. (Contributed by NM, 13-May-1999.) |
Ref | Expression |
---|---|
lenlt | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 11022 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
2 | rexr 11022 | . 2 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
3 | xrlenlt 11041 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2110 class class class wbr 5079 ℝcr 10871 ℝ*cxr 11009 < clt 11010 ≤ cle 11011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-opab 5142 df-xp 5596 df-cnv 5598 df-xr 11014 df-le 11016 |
This theorem is referenced by: ltnle 11055 letri3 11061 leloe 11062 eqlelt 11063 ne0gt0 11080 lelttric 11082 lenlti 11095 lenltd 11121 ltaddsub 11449 leord1 11502 lediv1 11840 suprleub 11941 dfinfre 11956 infregelb 11959 nnge1 12001 nnnlt1 12005 avgle1 12213 avgle2 12214 nn0nlt0 12259 recnz 12395 btwnnz 12396 prime 12401 indstr 12655 uzsupss 12679 zbtwnre 12685 rpneg 12761 2resupmax 12921 fzn 13271 nelfzo 13391 fzonlt0 13408 fllt 13524 flflp1 13525 modifeq2int 13651 om2uzlt2i 13669 fsuppmapnn0fiub0 13711 suppssfz 13712 leexp2 13887 discr 13953 bcval4 14019 ccatsymb 14285 swrd0 14369 sqrtneglem 14976 harmonic 15569 efle 15825 dvdsle 16017 dfgcd2 16252 lcmf 16336 infpnlem1 16609 pgpssslw 19217 gsummoncoe1 21473 mp2pm2mplem4 21956 dvferm1 25147 dvferm2 25149 dgrlt 25425 logleb 25756 argrege0 25764 ellogdm 25792 cxple 25848 cxple3 25854 asinneg 26034 birthdaylem3 26101 ppieq0 26323 chpeq0 26354 chteq0 26355 lgsval2lem 26453 lgsneg 26467 lgsdilem 26470 gausslemma2dlem1a 26511 gausslemma2dlem3 26514 ostth2lem1 26764 ostth3 26784 rusgrnumwwlks 28335 clwlkclwwlklem2a 28358 frgrreg 28754 friendship 28759 nmounbi 29134 nmlno0lem 29151 nmlnop0iALT 30353 supfz 33690 inffz 33691 fz0n 33692 nn0prpw 34508 leceifl 35762 poimirlem15 35788 poimirlem16 35789 poimirlem17 35790 poimirlem20 35793 poimirlem24 35797 poimirlem31 35804 poimirlem32 35805 ftc1anclem1 35846 nninfnub 35905 metakunt22 40143 ellz1 40586 rencldnfilem 40639 icccncfext 43399 subsubelfzo0 44787 digexp 45922 reorelicc 46025 |
Copyright terms: Public domain | W3C validator |