| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lenlt | Structured version Visualization version GIF version | ||
| Description: 'Less than or equal to' expressed in terms of 'less than'. (Contributed by NM, 13-May-1999.) |
| Ref | Expression |
|---|---|
| lenlt | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr 11158 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 2 | rexr 11158 | . 2 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
| 3 | xrlenlt 11177 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 class class class wbr 5089 ℝcr 11005 ℝ*cxr 11145 < clt 11146 ≤ cle 11147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-cnv 5622 df-xr 11150 df-le 11152 |
| This theorem is referenced by: ltnle 11192 letri3 11198 leloe 11199 eqlelt 11200 ne0gt0 11218 lelttric 11220 lenlti 11233 lenltd 11259 ltaddsub 11591 leord1 11644 lediv1 11987 suprleub 12088 dfinfre 12103 infregelb 12106 nnge1 12153 nnnlt1 12157 avgle1 12361 avgle2 12362 nn0nlt0 12407 recnz 12548 btwnnz 12549 prime 12554 indstr 12814 uzsupss 12838 zbtwnre 12844 rpneg 12924 2resupmax 13087 fzn 13440 nelfzo 13564 fzonlt0 13582 fllt 13710 flflp1 13711 modifeq2int 13840 om2uzlt2i 13858 fsuppmapnn0fiub0 13900 suppssfz 13901 leexp2 14078 discr 14147 bcval4 14214 ccatsymb 14490 swrd0 14566 sqrtneglem 15173 harmonic 15766 efle 16027 dvdsle 16221 dfgcd2 16457 lcmf 16544 infpnlem1 16822 pgpssslw 19526 gsummoncoe1 22223 mp2pm2mplem4 22724 dvferm1 25916 dvferm2 25918 dgrlt 26199 logleb 26539 argrege0 26547 ellogdm 26575 cxple 26631 cxple3 26637 asinneg 26823 birthdaylem3 26890 ppieq0 27113 chpeq0 27146 chteq0 27147 lgsval2lem 27245 lgsneg 27259 lgsdilem 27262 gausslemma2dlem1a 27303 gausslemma2dlem3 27306 ostth2lem1 27556 ostth3 27576 rusgrnumwwlks 29955 clwlkclwwlklem2a 29978 frgrreg 30374 friendship 30379 nmounbi 30756 nmlno0lem 30773 nmlnop0iALT 31975 supfz 35773 inffz 35774 fz0n 35775 nn0prpw 36367 leceifl 37648 poimirlem15 37674 poimirlem16 37675 poimirlem17 37676 poimirlem20 37679 poimirlem24 37683 poimirlem31 37690 poimirlem32 37691 ftc1anclem1 37732 nninfnub 37790 ellz1 42859 rencldnfilem 42912 icccncfext 45984 subsubelfzo0 47425 digexp 48707 reorelicc 48810 |
| Copyright terms: Public domain | W3C validator |