| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lenlt | Structured version Visualization version GIF version | ||
| Description: 'Less than or equal to' expressed in terms of 'less than'. (Contributed by NM, 13-May-1999.) |
| Ref | Expression |
|---|---|
| lenlt | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr 11281 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 2 | rexr 11281 | . 2 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
| 3 | xrlenlt 11300 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 class class class wbr 5119 ℝcr 11128 ℝ*cxr 11268 < clt 11269 ≤ cle 11270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-cnv 5662 df-xr 11273 df-le 11275 |
| This theorem is referenced by: ltnle 11314 letri3 11320 leloe 11321 eqlelt 11322 ne0gt0 11340 lelttric 11342 lenlti 11355 lenltd 11381 ltaddsub 11711 leord1 11764 lediv1 12107 suprleub 12208 dfinfre 12223 infregelb 12226 nnge1 12268 nnnlt1 12272 avgle1 12481 avgle2 12482 nn0nlt0 12527 recnz 12668 btwnnz 12669 prime 12674 indstr 12932 uzsupss 12956 zbtwnre 12962 rpneg 13041 2resupmax 13204 fzn 13557 nelfzo 13681 fzonlt0 13699 fllt 13823 flflp1 13824 modifeq2int 13951 om2uzlt2i 13969 fsuppmapnn0fiub0 14011 suppssfz 14012 leexp2 14189 discr 14258 bcval4 14325 ccatsymb 14600 swrd0 14676 sqrtneglem 15285 harmonic 15875 efle 16136 dvdsle 16329 dfgcd2 16565 lcmf 16652 infpnlem1 16930 pgpssslw 19595 gsummoncoe1 22246 mp2pm2mplem4 22747 dvferm1 25941 dvferm2 25943 dgrlt 26224 logleb 26564 argrege0 26572 ellogdm 26600 cxple 26656 cxple3 26662 asinneg 26848 birthdaylem3 26915 ppieq0 27138 chpeq0 27171 chteq0 27172 lgsval2lem 27270 lgsneg 27284 lgsdilem 27287 gausslemma2dlem1a 27328 gausslemma2dlem3 27331 ostth2lem1 27581 ostth3 27601 rusgrnumwwlks 29956 clwlkclwwlklem2a 29979 frgrreg 30375 friendship 30380 nmounbi 30757 nmlno0lem 30774 nmlnop0iALT 31976 supfz 35746 inffz 35747 fz0n 35748 nn0prpw 36341 leceifl 37633 poimirlem15 37659 poimirlem16 37660 poimirlem17 37661 poimirlem20 37664 poimirlem24 37668 poimirlem31 37675 poimirlem32 37676 ftc1anclem1 37717 nninfnub 37775 metakunt22 42239 ellz1 42790 rencldnfilem 42843 icccncfext 45916 subsubelfzo0 47355 digexp 48587 reorelicc 48690 |
| Copyright terms: Public domain | W3C validator |