![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lenlt | Structured version Visualization version GIF version |
Description: 'Less than or equal to' expressed in terms of 'less than'. (Contributed by NM, 13-May-1999.) |
Ref | Expression |
---|---|
lenlt | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 11336 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
2 | rexr 11336 | . 2 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
3 | xrlenlt 11355 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
4 | 1, 2, 3 | syl2an 595 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 class class class wbr 5166 ℝcr 11183 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-xr 11328 df-le 11330 |
This theorem is referenced by: ltnle 11369 letri3 11375 leloe 11376 eqlelt 11377 ne0gt0 11395 lelttric 11397 lenlti 11410 lenltd 11436 ltaddsub 11764 leord1 11817 lediv1 12160 suprleub 12261 dfinfre 12276 infregelb 12279 nnge1 12321 nnnlt1 12325 avgle1 12533 avgle2 12534 nn0nlt0 12579 recnz 12718 btwnnz 12719 prime 12724 indstr 12981 uzsupss 13005 zbtwnre 13011 rpneg 13089 2resupmax 13250 fzn 13600 nelfzo 13721 fzonlt0 13739 fllt 13857 flflp1 13858 modifeq2int 13984 om2uzlt2i 14002 fsuppmapnn0fiub0 14044 suppssfz 14045 leexp2 14221 discr 14289 bcval4 14356 ccatsymb 14630 swrd0 14706 sqrtneglem 15315 harmonic 15907 efle 16166 dvdsle 16358 dfgcd2 16593 lcmf 16680 infpnlem1 16957 pgpssslw 19656 gsummoncoe1 22333 mp2pm2mplem4 22836 dvferm1 26043 dvferm2 26045 dgrlt 26326 logleb 26663 argrege0 26671 ellogdm 26699 cxple 26755 cxple3 26761 asinneg 26947 birthdaylem3 27014 ppieq0 27237 chpeq0 27270 chteq0 27271 lgsval2lem 27369 lgsneg 27383 lgsdilem 27386 gausslemma2dlem1a 27427 gausslemma2dlem3 27430 ostth2lem1 27680 ostth3 27700 rusgrnumwwlks 30007 clwlkclwwlklem2a 30030 frgrreg 30426 friendship 30431 nmounbi 30808 nmlno0lem 30825 nmlnop0iALT 32027 supfz 35691 inffz 35692 fz0n 35693 nn0prpw 36289 leceifl 37569 poimirlem15 37595 poimirlem16 37596 poimirlem17 37597 poimirlem20 37600 poimirlem24 37604 poimirlem31 37611 poimirlem32 37612 ftc1anclem1 37653 nninfnub 37711 metakunt22 42183 ellz1 42723 rencldnfilem 42776 icccncfext 45808 subsubelfzo0 47241 digexp 48341 reorelicc 48444 |
Copyright terms: Public domain | W3C validator |