| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lenlt | Structured version Visualization version GIF version | ||
| Description: 'Less than or equal to' expressed in terms of 'less than'. (Contributed by NM, 13-May-1999.) |
| Ref | Expression |
|---|---|
| lenlt | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr 11161 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 2 | rexr 11161 | . 2 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
| 3 | xrlenlt 11180 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5092 ℝcr 11008 ℝ*cxr 11148 < clt 11149 ≤ cle 11150 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-cnv 5627 df-xr 11153 df-le 11155 |
| This theorem is referenced by: ltnle 11195 letri3 11201 leloe 11202 eqlelt 11203 ne0gt0 11221 lelttric 11223 lenlti 11236 lenltd 11262 ltaddsub 11594 leord1 11647 lediv1 11990 suprleub 12091 dfinfre 12106 infregelb 12109 nnge1 12156 nnnlt1 12160 avgle1 12364 avgle2 12365 nn0nlt0 12410 recnz 12551 btwnnz 12552 prime 12557 indstr 12817 uzsupss 12841 zbtwnre 12847 rpneg 12927 2resupmax 13090 fzn 13443 nelfzo 13567 fzonlt0 13585 fllt 13710 flflp1 13711 modifeq2int 13840 om2uzlt2i 13858 fsuppmapnn0fiub0 13900 suppssfz 13901 leexp2 14078 discr 14147 bcval4 14214 ccatsymb 14489 swrd0 14565 sqrtneglem 15173 harmonic 15766 efle 16027 dvdsle 16221 dfgcd2 16457 lcmf 16544 infpnlem1 16822 pgpssslw 19493 gsummoncoe1 22193 mp2pm2mplem4 22694 dvferm1 25887 dvferm2 25889 dgrlt 26170 logleb 26510 argrege0 26518 ellogdm 26546 cxple 26602 cxple3 26608 asinneg 26794 birthdaylem3 26861 ppieq0 27084 chpeq0 27117 chteq0 27118 lgsval2lem 27216 lgsneg 27230 lgsdilem 27233 gausslemma2dlem1a 27274 gausslemma2dlem3 27277 ostth2lem1 27527 ostth3 27547 rusgrnumwwlks 29919 clwlkclwwlklem2a 29942 frgrreg 30338 friendship 30343 nmounbi 30720 nmlno0lem 30737 nmlnop0iALT 31939 supfz 35712 inffz 35713 fz0n 35714 nn0prpw 36307 leceifl 37599 poimirlem15 37625 poimirlem16 37626 poimirlem17 37627 poimirlem20 37630 poimirlem24 37634 poimirlem31 37641 poimirlem32 37642 ftc1anclem1 37683 nninfnub 37741 ellz1 42750 rencldnfilem 42803 icccncfext 45878 subsubelfzo0 47320 digexp 48602 reorelicc 48705 |
| Copyright terms: Public domain | W3C validator |