| Metamath
Proof Explorer Theorem List (p. 122 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | lereci 12101 | The reciprocal of both sides of 'less than or equal to'. (Contributed by NM, 16-Sep-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 < 𝐴 ∧ 0 < 𝐵) → (𝐴 ≤ 𝐵 ↔ (1 / 𝐵) ≤ (1 / 𝐴))) | ||
| Theorem | lt2msqi 12102 | The square function on nonnegative reals is strictly monotonic. (Contributed by NM, 3-Aug-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴 < 𝐵 ↔ (𝐴 · 𝐴) < (𝐵 · 𝐵))) | ||
| Theorem | le2msqi 12103 | The square function on nonnegative reals is monotonic. (Contributed by NM, 2-Aug-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴 ≤ 𝐵 ↔ (𝐴 · 𝐴) ≤ (𝐵 · 𝐵))) | ||
| Theorem | msq11i 12104 | The square of a nonnegative number is a one-to-one function. (Contributed by NM, 29-Jul-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → ((𝐴 · 𝐴) = (𝐵 · 𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | divgt0i2i 12105 | The ratio of two positive numbers is positive. (Contributed by NM, 16-May-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 0 < 𝐵 ⇒ ⊢ (0 < 𝐴 → 0 < (𝐴 / 𝐵)) | ||
| Theorem | ltrecii 12106 | The reciprocal of both sides of 'less than'. (Contributed by NM, 15-Sep-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 0 < 𝐴 & ⊢ 0 < 𝐵 ⇒ ⊢ (𝐴 < 𝐵 ↔ (1 / 𝐵) < (1 / 𝐴)) | ||
| Theorem | divgt0ii 12107 | The ratio of two positive numbers is positive. (Contributed by NM, 18-May-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 0 < 𝐴 & ⊢ 0 < 𝐵 ⇒ ⊢ 0 < (𝐴 / 𝐵) | ||
| Theorem | ltmul1i 12108 | Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 16-May-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ ⇒ ⊢ (0 < 𝐶 → (𝐴 < 𝐵 ↔ (𝐴 · 𝐶) < (𝐵 · 𝐶))) | ||
| Theorem | ltdiv1i 12109 | Division of both sides of 'less than' by a positive number. (Contributed by NM, 16-May-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ ⇒ ⊢ (0 < 𝐶 → (𝐴 < 𝐵 ↔ (𝐴 / 𝐶) < (𝐵 / 𝐶))) | ||
| Theorem | ltmuldivi 12110 | 'Less than' relationship between division and multiplication. (Contributed by NM, 12-Oct-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ ⇒ ⊢ (0 < 𝐶 → ((𝐴 · 𝐶) < 𝐵 ↔ 𝐴 < (𝐵 / 𝐶))) | ||
| Theorem | ltmul2i 12111 | Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 16-May-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ ⇒ ⊢ (0 < 𝐶 → (𝐴 < 𝐵 ↔ (𝐶 · 𝐴) < (𝐶 · 𝐵))) | ||
| Theorem | lemul1i 12112 | Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by NM, 2-Aug-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ ⇒ ⊢ (0 < 𝐶 → (𝐴 ≤ 𝐵 ↔ (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))) | ||
| Theorem | lemul2i 12113 | Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by NM, 1-Aug-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ ⇒ ⊢ (0 < 𝐶 → (𝐴 ≤ 𝐵 ↔ (𝐶 · 𝐴) ≤ (𝐶 · 𝐵))) | ||
| Theorem | ltdiv23i 12114 | Swap denominator with other side of 'less than'. (Contributed by NM, 26-Sep-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ ⇒ ⊢ ((0 < 𝐵 ∧ 0 < 𝐶) → ((𝐴 / 𝐵) < 𝐶 ↔ (𝐴 / 𝐶) < 𝐵)) | ||
| Theorem | ledivp1i 12115 | "Less than or equal to" and division relation. (Lemma for computing upper bounds of products. The "+ 1" prevents division by zero.) (Contributed by NM, 17-Sep-2005.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ∧ 𝐴 ≤ (𝐵 / (𝐶 + 1))) → (𝐴 · 𝐶) ≤ 𝐵) | ||
| Theorem | ltdivp1i 12116 | Less-than and division relation. (Lemma for computing upper bounds of products. The "+ 1" prevents division by zero.) (Contributed by NM, 17-Sep-2005.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ∧ 𝐴 < (𝐵 / (𝐶 + 1))) → (𝐴 · 𝐶) < 𝐵) | ||
| Theorem | ltdiv23ii 12117 | Swap denominator with other side of 'less than'. (Contributed by NM, 26-Sep-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ & ⊢ 0 < 𝐵 & ⊢ 0 < 𝐶 ⇒ ⊢ ((𝐴 / 𝐵) < 𝐶 ↔ (𝐴 / 𝐶) < 𝐵) | ||
| Theorem | ltmul1ii 12118 | Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 16-May-1999.) (Proof shortened by Paul Chapman, 25-Jan-2008.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ & ⊢ 0 < 𝐶 ⇒ ⊢ (𝐴 < 𝐵 ↔ (𝐴 · 𝐶) < (𝐵 · 𝐶)) | ||
| Theorem | ltdiv1ii 12119 | Division of both sides of 'less than' by a positive number. (Contributed by NM, 16-May-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ & ⊢ 0 < 𝐶 ⇒ ⊢ (𝐴 < 𝐵 ↔ (𝐴 / 𝐶) < (𝐵 / 𝐶)) | ||
| Theorem | ltp1d 12120 | A number is less than itself plus 1. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 < (𝐴 + 1)) | ||
| Theorem | lep1d 12121 | A number is less than or equal to itself plus 1. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ≤ (𝐴 + 1)) | ||
| Theorem | ltm1d 12122 | A number minus 1 is less than itself. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 − 1) < 𝐴) | ||
| Theorem | lem1d 12123 | A number minus 1 is less than or equal to itself. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 − 1) ≤ 𝐴) | ||
| Theorem | recgt0d 12124 | The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴) ⇒ ⊢ (𝜑 → 0 < (1 / 𝐴)) | ||
| Theorem | divgt0d 12125 | The ratio of two positive numbers is positive. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴) & ⊢ (𝜑 → 0 < 𝐵) ⇒ ⊢ (𝜑 → 0 < (𝐴 / 𝐵)) | ||
| Theorem | mulgt1d 12126 | The product of two numbers greater than 1 is greater than 1. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 1 < 𝐴) & ⊢ (𝜑 → 1 < 𝐵) ⇒ ⊢ (𝜑 → 1 < (𝐴 · 𝐵)) | ||
| Theorem | lemulge11d 12127 | Multiplication by a number greater than or equal to 1. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 1 ≤ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ≤ (𝐴 · 𝐵)) | ||
| Theorem | lemulge12d 12128 | Multiplication by a number greater than or equal to 1. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 1 ≤ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ≤ (𝐵 · 𝐴)) | ||
| Theorem | lemul1ad 12129 | Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐶) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)) | ||
| Theorem | lemul2ad 12130 | Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐶) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐶 · 𝐴) ≤ (𝐶 · 𝐵)) | ||
| Theorem | ltmul12ad 12131 | Comparison of product of two positive numbers. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 0 ≤ 𝐶) & ⊢ (𝜑 → 𝐶 < 𝐷) ⇒ ⊢ (𝜑 → (𝐴 · 𝐶) < (𝐵 · 𝐷)) | ||
| Theorem | lemul12ad 12132 | Comparison of product of two nonnegative numbers. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 0 ≤ 𝐶) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐶 ≤ 𝐷) ⇒ ⊢ (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)) | ||
| Theorem | lemul12bd 12133 | Comparison of product of two nonnegative numbers. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 0 ≤ 𝐷) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐶 ≤ 𝐷) ⇒ ⊢ (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)) | ||
| Theorem | fimaxre 12134* | A finite set of real numbers has a maximum. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Steven Nguyen, 3-Jun-2023.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | ||
| Theorem | fimaxre2 12135* | A nonempty finite set of real numbers has an upper bound. (Contributed by Jeff Madsen, 27-May-2011.) (Revised by Mario Carneiro, 13-Feb-2014.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | ||
| Theorem | fimaxre3 12136* | A nonempty finite set of real numbers has a maximum (image set version). (Contributed by Mario Carneiro, 13-Feb-2014.) |
| ⊢ ((𝐴 ∈ Fin ∧ ∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝐵 ≤ 𝑥) | ||
| Theorem | fiminre 12137* | A nonempty finite set of real numbers has a minimum. Analogous to fimaxre 12134. (Contributed by AV, 9-Aug-2020.) (Proof shortened by Steven Nguyen, 3-Jun-2023.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) | ||
| Theorem | fiminre2 12138* | A nonempty finite set of real numbers is bounded below. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) | ||
| Theorem | negfi 12139* | The negation of a finite set of real numbers is finite. (Contributed by AV, 9-Aug-2020.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → {𝑛 ∈ ℝ ∣ -𝑛 ∈ 𝐴} ∈ Fin) | ||
| Theorem | lbreu 12140* | If a set of reals contains a lower bound, it contains a unique lower bound. (Contributed by NM, 9-Oct-2005.) |
| ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → ∃!𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) | ||
| Theorem | lbcl 12141* | If a set of reals contains a lower bound, it contains a unique lower bound that belongs to the set. (Contributed by NM, 9-Oct-2005.) (Revised by Mario Carneiro, 24-Dec-2016.) |
| ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ∈ 𝑆) | ||
| Theorem | lble 12142* | If a set of reals contains a lower bound, the lower bound is less than or equal to all members of the set. (Contributed by NM, 9-Oct-2005.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
| ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝑆) → (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ≤ 𝐴) | ||
| Theorem | lbinf 12143* | If a set of reals contains a lower bound, the lower bound is its infimum. (Contributed by NM, 9-Oct-2005.) (Revised by AV, 4-Sep-2020.) |
| ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → inf(𝑆, ℝ, < ) = (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦)) | ||
| Theorem | lbinfcl 12144* | If a set of reals contains a lower bound, it contains its infimum. (Contributed by NM, 11-Oct-2005.) (Revised by AV, 4-Sep-2020.) |
| ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → inf(𝑆, ℝ, < ) ∈ 𝑆) | ||
| Theorem | lbinfle 12145* | If a set of reals contains a lower bound, its infimum is less than or equal to all members of the set. (Contributed by NM, 11-Oct-2005.) (Revised by AV, 4-Sep-2020.) |
| ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝑆) → inf(𝑆, ℝ, < ) ≤ 𝐴) | ||
| Theorem | sup2 12146* | A nonempty, bounded-above set of reals has a supremum. Stronger version of completeness axiom (it has a slightly weaker antecedent). (Contributed by NM, 19-Jan-1997.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 ∨ 𝑦 = 𝑥)) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | ||
| Theorem | sup3 12147* | A version of the completeness axiom for reals. (Contributed by NM, 12-Oct-2004.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | ||
| Theorem | infm3lem 12148* | Lemma for infm3 12149. (Contributed by NM, 14-Jun-2005.) |
| ⊢ (𝑥 ∈ ℝ → ∃𝑦 ∈ ℝ 𝑥 = -𝑦) | ||
| Theorem | infm3 12149* | The completeness axiom for reals in terms of infimum: a nonempty, bounded-below set of reals has an infimum. (This theorem is the dual of sup3 12147.) (Contributed by NM, 14-Jun-2005.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) | ||
| Theorem | suprcl 12150* | Closure of supremum of a nonempty bounded set of reals. (Contributed by NM, 12-Oct-2004.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ) | ||
| Theorem | suprub 12151* | A member of a nonempty bounded set of reals is less than or equal to the set's upper bound. (Contributed by NM, 12-Oct-2004.) |
| ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝐵 ∈ 𝐴) → 𝐵 ≤ sup(𝐴, ℝ, < )) | ||
| Theorem | suprubd 12152* | Natural deduction form of suprubd 12152. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐵 ≤ sup(𝐴, ℝ, < )) | ||
| Theorem | suprcld 12153* | Natural deduction form of suprcl 12150. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ⇒ ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ) | ||
| Theorem | suprlub 12154* | The supremum of a nonempty bounded set of reals is the least upper bound. (Contributed by NM, 15-Nov-2004.) (Revised by Mario Carneiro, 6-Sep-2014.) |
| ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝐵 ∈ ℝ) → (𝐵 < sup(𝐴, ℝ, < ) ↔ ∃𝑧 ∈ 𝐴 𝐵 < 𝑧)) | ||
| Theorem | suprnub 12155* | An upper bound is not less than the supremum of a nonempty bounded set of reals. (Contributed by NM, 15-Nov-2004.) (Revised by Mario Carneiro, 6-Sep-2014.) |
| ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝐵 ∈ ℝ) → (¬ 𝐵 < sup(𝐴, ℝ, < ) ↔ ∀𝑧 ∈ 𝐴 ¬ 𝐵 < 𝑧)) | ||
| Theorem | suprleub 12156* | The supremum of a nonempty bounded set of reals is less than or equal to an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 6-Sep-2014.) |
| ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝐵 ∈ ℝ) → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧 ∈ 𝐴 𝑧 ≤ 𝐵)) | ||
| Theorem | supaddc 12157* | The supremum function distributes over addition in a sense similar to that in supmul1 12159. (Contributed by Brendan Leahy, 25-Sep-2017.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ 𝐶 = {𝑧 ∣ ∃𝑣 ∈ 𝐴 𝑧 = (𝑣 + 𝐵)} ⇒ ⊢ (𝜑 → (sup(𝐴, ℝ, < ) + 𝐵) = sup(𝐶, ℝ, < )) | ||
| Theorem | supadd 12158* | The supremum function distributes over addition in a sense similar to that in supmul 12162. (Contributed by Brendan Leahy, 26-Sep-2017.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) & ⊢ (𝜑 → 𝐵 ⊆ ℝ) & ⊢ (𝜑 → 𝐵 ≠ ∅) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑦 ≤ 𝑥) & ⊢ 𝐶 = {𝑧 ∣ ∃𝑣 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑣 + 𝑏)} ⇒ ⊢ (𝜑 → (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < )) = sup(𝐶, ℝ, < )) | ||
| Theorem | supmul1 12159* | The supremum function distributes over multiplication, in the sense that 𝐴 · (sup𝐵) = sup(𝐴 · 𝐵), where 𝐴 · 𝐵 is shorthand for {𝐴 · 𝑏 ∣ 𝑏 ∈ 𝐵} and is defined as 𝐶 below. This is the simple version, with only one set argument; see supmul 12162 for the more general case with two set arguments. (Contributed by Mario Carneiro, 5-Jul-2013.) |
| ⊢ 𝐶 = {𝑧 ∣ ∃𝑣 ∈ 𝐵 𝑧 = (𝐴 · 𝑣)} & ⊢ (𝜑 ↔ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ 𝐵 0 ≤ 𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑦 ≤ 𝑥))) ⇒ ⊢ (𝜑 → (𝐴 · sup(𝐵, ℝ, < )) = sup(𝐶, ℝ, < )) | ||
| Theorem | supmullem1 12160* | Lemma for supmul 12162. (Contributed by Mario Carneiro, 5-Jul-2013.) |
| ⊢ 𝐶 = {𝑧 ∣ ∃𝑣 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑣 · 𝑏)} & ⊢ (𝜑 ↔ ((∀𝑥 ∈ 𝐴 0 ≤ 𝑥 ∧ ∀𝑥 ∈ 𝐵 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑦 ≤ 𝑥))) ⇒ ⊢ (𝜑 → ∀𝑤 ∈ 𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < ))) | ||
| Theorem | supmullem2 12161* | Lemma for supmul 12162. (Contributed by Mario Carneiro, 5-Jul-2013.) |
| ⊢ 𝐶 = {𝑧 ∣ ∃𝑣 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑣 · 𝑏)} & ⊢ (𝜑 ↔ ((∀𝑥 ∈ 𝐴 0 ≤ 𝑥 ∧ ∀𝑥 ∈ 𝐵 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑦 ≤ 𝑥))) ⇒ ⊢ (𝜑 → (𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝐶 𝑤 ≤ 𝑥)) | ||
| Theorem | supmul 12162* | The supremum function distributes over multiplication, in the sense that (sup𝐴) · (sup𝐵) = sup(𝐴 · 𝐵), where 𝐴 · 𝐵 is shorthand for {𝑎 · 𝑏 ∣ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} and is defined as 𝐶 below. We made use of this in our definition of multiplication in the Dedekind cut construction of the reals (see df-mp 10944). (Contributed by Mario Carneiro, 5-Jul-2013.) (Revised by Mario Carneiro, 6-Sep-2014.) |
| ⊢ 𝐶 = {𝑧 ∣ ∃𝑣 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑣 · 𝑏)} & ⊢ (𝜑 ↔ ((∀𝑥 ∈ 𝐴 0 ≤ 𝑥 ∧ ∀𝑥 ∈ 𝐵 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑦 ≤ 𝑥))) ⇒ ⊢ (𝜑 → (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )) = sup(𝐶, ℝ, < )) | ||
| Theorem | sup3ii 12163* | A version of the completeness axiom for reals. (Contributed by NM, 23-Aug-1999.) |
| ⊢ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ⇒ ⊢ ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) | ||
| Theorem | suprclii 12164* | Closure of supremum of a nonempty bounded set of reals. (Contributed by NM, 12-Sep-1999.) |
| ⊢ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ⇒ ⊢ sup(𝐴, ℝ, < ) ∈ ℝ | ||
| Theorem | suprubii 12165* | A member of a nonempty bounded set of reals is less than or equal to the set's upper bound. (Contributed by NM, 12-Sep-1999.) |
| ⊢ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ⇒ ⊢ (𝐵 ∈ 𝐴 → 𝐵 ≤ sup(𝐴, ℝ, < )) | ||
| Theorem | suprlubii 12166* | The supremum of a nonempty bounded set of reals is the least upper bound. (Contributed by NM, 15-Oct-2004.) (Revised by Mario Carneiro, 6-Sep-2014.) |
| ⊢ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ⇒ ⊢ (𝐵 ∈ ℝ → (𝐵 < sup(𝐴, ℝ, < ) ↔ ∃𝑧 ∈ 𝐴 𝐵 < 𝑧)) | ||
| Theorem | suprnubii 12167* | An upper bound is not less than the supremum of a nonempty bounded set of reals. (Contributed by NM, 15-Oct-2004.) (Revised by Mario Carneiro, 6-Sep-2014.) |
| ⊢ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ⇒ ⊢ (𝐵 ∈ ℝ → (¬ 𝐵 < sup(𝐴, ℝ, < ) ↔ ∀𝑧 ∈ 𝐴 ¬ 𝐵 < 𝑧)) | ||
| Theorem | suprleubii 12168* | The supremum of a nonempty bounded set of reals is less than or equal to an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 6-Sep-2014.) |
| ⊢ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ⇒ ⊢ (𝐵 ∈ ℝ → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧 ∈ 𝐴 𝑧 ≤ 𝐵)) | ||
| Theorem | riotaneg 12169* | The negative of the unique real such that 𝜑. (Contributed by NM, 13-Jun-2005.) |
| ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥 ∈ ℝ 𝜑 → (℩𝑥 ∈ ℝ 𝜑) = -(℩𝑦 ∈ ℝ 𝜓)) | ||
| Theorem | negiso 12170 | Negation is an order anti-isomorphism of the real numbers, which is its own inverse. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ -𝑥) ⇒ ⊢ (𝐹 Isom < , ◡ < (ℝ, ℝ) ∧ ◡𝐹 = 𝐹) | ||
| Theorem | dfinfre 12171* | The infimum of a set of reals 𝐴. (Contributed by NM, 9-Oct-2005.) (Revised by AV, 4-Sep-2020.) |
| ⊢ (𝐴 ⊆ ℝ → inf(𝐴, ℝ, < ) = ∪ {𝑥 ∈ ℝ ∣ (∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))}) | ||
| Theorem | infrecl 12172* | Closure of infimum of a nonempty bounded set of reals. (Contributed by NM, 8-Oct-2005.) (Revised by AV, 4-Sep-2020.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → inf(𝐴, ℝ, < ) ∈ ℝ) | ||
| Theorem | infrenegsup 12173* | The infimum of a set of reals 𝐴 is the negative of the supremum of the negatives of its elements. The antecedent ensures that 𝐴 is nonempty and has a lower bound. (Contributed by NM, 14-Jun-2005.) (Revised by AV, 4-Sep-2020.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → inf(𝐴, ℝ, < ) = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}, ℝ, < )) | ||
| Theorem | infregelb 12174* | Any lower bound of a nonempty set of real numbers is less than or equal to its infimum. (Contributed by Jeff Hankins, 1-Sep-2013.) (Revised by AV, 4-Sep-2020.) (Proof modification is discouraged.) |
| ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ inf(𝐴, ℝ, < ) ↔ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧)) | ||
| Theorem | infrelb 12175* | If a nonempty set of real numbers has a lower bound, its infimum is less than or equal to any of its elements. (Contributed by Jeff Hankins, 15-Sep-2013.) (Revised by AV, 4-Sep-2020.) |
| ⊢ ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝐵) → inf(𝐵, ℝ, < ) ≤ 𝐴) | ||
| Theorem | infrefilb 12176 | The infimum of a finite set of reals is less than or equal to any of its elements. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ ((𝐵 ⊆ ℝ ∧ 𝐵 ∈ Fin ∧ 𝐴 ∈ 𝐵) → inf(𝐵, ℝ, < ) ≤ 𝐴) | ||
| Theorem | supfirege 12177 | The supremum of a finite set of real numbers is greater than or equal to all the real numbers of the set. (Contributed by AV, 1-Oct-2019.) |
| ⊢ (𝜑 → 𝐵 ⊆ ℝ) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 = sup(𝐵, ℝ, < )) ⇒ ⊢ (𝜑 → 𝐶 ≤ 𝑆) | ||
| Theorem | neg1cn 12178 | -1 is a complex number. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| ⊢ -1 ∈ ℂ | ||
| Theorem | neg1rr 12179 | -1 is a real number. (Contributed by David A. Wheeler, 5-Dec-2018.) |
| ⊢ -1 ∈ ℝ | ||
| Theorem | neg1ne0 12180 | -1 is nonzero. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ -1 ≠ 0 | ||
| Theorem | neg1lt0 12181 | -1 is less than 0. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ -1 < 0 | ||
| Theorem | negneg1e1 12182 | --1 is 1. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ --1 = 1 | ||
| Theorem | inelr 12183 | The imaginary unit i is not a real number. (Contributed by NM, 6-May-1999.) |
| ⊢ ¬ i ∈ ℝ | ||
| Theorem | rimul 12184 | A real number times the imaginary unit is real only if the number is 0. (Contributed by NM, 28-May-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → 𝐴 = 0) | ||
| Theorem | cru 12185 | The representation of complex numbers in terms of real and imaginary parts is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷)) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
| Theorem | crne0 12186 | The real representation of complex numbers is nonzero iff one of its terms is nonzero. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ (𝐴 + (i · 𝐵)) ≠ 0)) | ||
| Theorem | creur 12187* | The real part of a complex number is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | ||
| Theorem | creui 12188* | The imaginary part of a complex number is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → ∃!𝑦 ∈ ℝ ∃𝑥 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | ||
| Theorem | cju 12189* | The complex conjugate of a complex number is unique. (Contributed by Mario Carneiro, 6-Nov-2013.) |
| ⊢ (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ)) | ||
| Theorem | ofsubeq0 12190 | Function analogue of subeq0 11455. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝐹 ∘f − 𝐺) = (𝐴 × {0}) ↔ 𝐹 = 𝐺)) | ||
| Theorem | ofnegsub 12191 | Function analogue of negsub 11477. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝐹 ∘f + ((𝐴 × {-1}) ∘f · 𝐺)) = (𝐹 ∘f − 𝐺)) | ||
| Theorem | ofsubge0 12192 | Function analogue of subge0 11698. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → ((𝐴 × {0}) ∘r ≤ (𝐹 ∘f − 𝐺) ↔ 𝐺 ∘r ≤ 𝐹)) | ||
| Syntax | cn 12193 | Extend class notation to include the class of positive integers. |
| class ℕ | ||
| Definition | df-nn 12194 |
Define the set of positive integers. Some authors, especially in analysis
books, call these the natural numbers, whereas other authors choose to
include 0 in their definition of natural numbers. Note that ℕ is a
subset of complex numbers (nnsscn 12198), in contrast to the more elementary
ordinal natural numbers ω, df-om 7846). See nnind 12211 for the
principle of mathematical induction. See df-n0 12450 for the set of
nonnegative integers ℕ0. See dfn2 12462
for ℕ defined in terms of
ℕ0.
This is a technical definition that helps us avoid the Axiom of Infinity ax-inf2 9601 in certain proofs. For a more conventional and intuitive definition ("the smallest set of reals containing 1 as well as the successor of every member") see dfnn3 12207 (or its slight variant dfnn2 12206). (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 3-May-2014.) |
| ⊢ ℕ = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “ ω) | ||
| Theorem | nnexALT 12195 | Alternate proof of nnex 12199, more direct, that makes use of ax-rep 5237. (Contributed by Mario Carneiro, 3-May-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ℕ ∈ V | ||
| Theorem | peano5nni 12196* | Peano's inductive postulate. Theorem I.36 (principle of mathematical induction) of [Apostol] p. 34. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ ((1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 + 1) ∈ 𝐴) → ℕ ⊆ 𝐴) | ||
| Theorem | nnssre 12197 | The positive integers are a subset of the reals. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.) |
| ⊢ ℕ ⊆ ℝ | ||
| Theorem | nnsscn 12198 | The positive integers are a subset of the complex numbers. Remark: this could also be proven from nnssre 12197 and ax-resscn 11132 at the cost of using more axioms. (Contributed by NM, 2-Aug-2004.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| ⊢ ℕ ⊆ ℂ | ||
| Theorem | nnex 12199 | The set of positive integers exists. (Contributed by NM, 3-Oct-1999.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ ℕ ∈ V | ||
| Theorem | nnre 12200 | A positive integer is a real number. (Contributed by NM, 18-Aug-1999.) |
| ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |