| Metamath
Proof Explorer Theorem List (p. 122 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49778) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | infm3lem 12101* | Lemma for infm3 12102. (Contributed by NM, 14-Jun-2005.) |
| ⊢ (𝑥 ∈ ℝ → ∃𝑦 ∈ ℝ 𝑥 = -𝑦) | ||
| Theorem | infm3 12102* | The completeness axiom for reals in terms of infimum: a nonempty, bounded-below set of reals has an infimum. (This theorem is the dual of sup3 12100.) (Contributed by NM, 14-Jun-2005.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) | ||
| Theorem | suprcl 12103* | Closure of supremum of a nonempty bounded set of reals. (Contributed by NM, 12-Oct-2004.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ) | ||
| Theorem | suprub 12104* | A member of a nonempty bounded set of reals is less than or equal to the set's upper bound. (Contributed by NM, 12-Oct-2004.) |
| ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝐵 ∈ 𝐴) → 𝐵 ≤ sup(𝐴, ℝ, < )) | ||
| Theorem | suprubd 12105* | Natural deduction form of suprubd 12105. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐵 ≤ sup(𝐴, ℝ, < )) | ||
| Theorem | suprcld 12106* | Natural deduction form of suprcl 12103. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ⇒ ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ) | ||
| Theorem | suprlub 12107* | The supremum of a nonempty bounded set of reals is the least upper bound. (Contributed by NM, 15-Nov-2004.) (Revised by Mario Carneiro, 6-Sep-2014.) |
| ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝐵 ∈ ℝ) → (𝐵 < sup(𝐴, ℝ, < ) ↔ ∃𝑧 ∈ 𝐴 𝐵 < 𝑧)) | ||
| Theorem | suprnub 12108* | An upper bound is not less than the supremum of a nonempty bounded set of reals. (Contributed by NM, 15-Nov-2004.) (Revised by Mario Carneiro, 6-Sep-2014.) |
| ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝐵 ∈ ℝ) → (¬ 𝐵 < sup(𝐴, ℝ, < ) ↔ ∀𝑧 ∈ 𝐴 ¬ 𝐵 < 𝑧)) | ||
| Theorem | suprleub 12109* | The supremum of a nonempty bounded set of reals is less than or equal to an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 6-Sep-2014.) |
| ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝐵 ∈ ℝ) → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧 ∈ 𝐴 𝑧 ≤ 𝐵)) | ||
| Theorem | supaddc 12110* | The supremum function distributes over addition in a sense similar to that in supmul1 12112. (Contributed by Brendan Leahy, 25-Sep-2017.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ 𝐶 = {𝑧 ∣ ∃𝑣 ∈ 𝐴 𝑧 = (𝑣 + 𝐵)} ⇒ ⊢ (𝜑 → (sup(𝐴, ℝ, < ) + 𝐵) = sup(𝐶, ℝ, < )) | ||
| Theorem | supadd 12111* | The supremum function distributes over addition in a sense similar to that in supmul 12115. (Contributed by Brendan Leahy, 26-Sep-2017.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) & ⊢ (𝜑 → 𝐵 ⊆ ℝ) & ⊢ (𝜑 → 𝐵 ≠ ∅) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑦 ≤ 𝑥) & ⊢ 𝐶 = {𝑧 ∣ ∃𝑣 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑣 + 𝑏)} ⇒ ⊢ (𝜑 → (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < )) = sup(𝐶, ℝ, < )) | ||
| Theorem | supmul1 12112* | The supremum function distributes over multiplication, in the sense that 𝐴 · (sup𝐵) = sup(𝐴 · 𝐵), where 𝐴 · 𝐵 is shorthand for {𝐴 · 𝑏 ∣ 𝑏 ∈ 𝐵} and is defined as 𝐶 below. This is the simple version, with only one set argument; see supmul 12115 for the more general case with two set arguments. (Contributed by Mario Carneiro, 5-Jul-2013.) |
| ⊢ 𝐶 = {𝑧 ∣ ∃𝑣 ∈ 𝐵 𝑧 = (𝐴 · 𝑣)} & ⊢ (𝜑 ↔ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ 𝐵 0 ≤ 𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑦 ≤ 𝑥))) ⇒ ⊢ (𝜑 → (𝐴 · sup(𝐵, ℝ, < )) = sup(𝐶, ℝ, < )) | ||
| Theorem | supmullem1 12113* | Lemma for supmul 12115. (Contributed by Mario Carneiro, 5-Jul-2013.) |
| ⊢ 𝐶 = {𝑧 ∣ ∃𝑣 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑣 · 𝑏)} & ⊢ (𝜑 ↔ ((∀𝑥 ∈ 𝐴 0 ≤ 𝑥 ∧ ∀𝑥 ∈ 𝐵 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑦 ≤ 𝑥))) ⇒ ⊢ (𝜑 → ∀𝑤 ∈ 𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < ))) | ||
| Theorem | supmullem2 12114* | Lemma for supmul 12115. (Contributed by Mario Carneiro, 5-Jul-2013.) |
| ⊢ 𝐶 = {𝑧 ∣ ∃𝑣 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑣 · 𝑏)} & ⊢ (𝜑 ↔ ((∀𝑥 ∈ 𝐴 0 ≤ 𝑥 ∧ ∀𝑥 ∈ 𝐵 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑦 ≤ 𝑥))) ⇒ ⊢ (𝜑 → (𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝐶 𝑤 ≤ 𝑥)) | ||
| Theorem | supmul 12115* | The supremum function distributes over multiplication, in the sense that (sup𝐴) · (sup𝐵) = sup(𝐴 · 𝐵), where 𝐴 · 𝐵 is shorthand for {𝑎 · 𝑏 ∣ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} and is defined as 𝐶 below. We made use of this in our definition of multiplication in the Dedekind cut construction of the reals (see df-mp 10897). (Contributed by Mario Carneiro, 5-Jul-2013.) (Revised by Mario Carneiro, 6-Sep-2014.) |
| ⊢ 𝐶 = {𝑧 ∣ ∃𝑣 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑣 · 𝑏)} & ⊢ (𝜑 ↔ ((∀𝑥 ∈ 𝐴 0 ≤ 𝑥 ∧ ∀𝑥 ∈ 𝐵 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑦 ≤ 𝑥))) ⇒ ⊢ (𝜑 → (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )) = sup(𝐶, ℝ, < )) | ||
| Theorem | sup3ii 12116* | A version of the completeness axiom for reals. (Contributed by NM, 23-Aug-1999.) |
| ⊢ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ⇒ ⊢ ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) | ||
| Theorem | suprclii 12117* | Closure of supremum of a nonempty bounded set of reals. (Contributed by NM, 12-Sep-1999.) |
| ⊢ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ⇒ ⊢ sup(𝐴, ℝ, < ) ∈ ℝ | ||
| Theorem | suprubii 12118* | A member of a nonempty bounded set of reals is less than or equal to the set's upper bound. (Contributed by NM, 12-Sep-1999.) |
| ⊢ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ⇒ ⊢ (𝐵 ∈ 𝐴 → 𝐵 ≤ sup(𝐴, ℝ, < )) | ||
| Theorem | suprlubii 12119* | The supremum of a nonempty bounded set of reals is the least upper bound. (Contributed by NM, 15-Oct-2004.) (Revised by Mario Carneiro, 6-Sep-2014.) |
| ⊢ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ⇒ ⊢ (𝐵 ∈ ℝ → (𝐵 < sup(𝐴, ℝ, < ) ↔ ∃𝑧 ∈ 𝐴 𝐵 < 𝑧)) | ||
| Theorem | suprnubii 12120* | An upper bound is not less than the supremum of a nonempty bounded set of reals. (Contributed by NM, 15-Oct-2004.) (Revised by Mario Carneiro, 6-Sep-2014.) |
| ⊢ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ⇒ ⊢ (𝐵 ∈ ℝ → (¬ 𝐵 < sup(𝐴, ℝ, < ) ↔ ∀𝑧 ∈ 𝐴 ¬ 𝐵 < 𝑧)) | ||
| Theorem | suprleubii 12121* | The supremum of a nonempty bounded set of reals is less than or equal to an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 6-Sep-2014.) |
| ⊢ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ⇒ ⊢ (𝐵 ∈ ℝ → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧 ∈ 𝐴 𝑧 ≤ 𝐵)) | ||
| Theorem | riotaneg 12122* | The negative of the unique real such that 𝜑. (Contributed by NM, 13-Jun-2005.) |
| ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥 ∈ ℝ 𝜑 → (℩𝑥 ∈ ℝ 𝜑) = -(℩𝑦 ∈ ℝ 𝜓)) | ||
| Theorem | negiso 12123 | Negation is an order anti-isomorphism of the real numbers, which is its own inverse. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ -𝑥) ⇒ ⊢ (𝐹 Isom < , ◡ < (ℝ, ℝ) ∧ ◡𝐹 = 𝐹) | ||
| Theorem | dfinfre 12124* | The infimum of a set of reals 𝐴. (Contributed by NM, 9-Oct-2005.) (Revised by AV, 4-Sep-2020.) |
| ⊢ (𝐴 ⊆ ℝ → inf(𝐴, ℝ, < ) = ∪ {𝑥 ∈ ℝ ∣ (∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))}) | ||
| Theorem | infrecl 12125* | Closure of infimum of a nonempty bounded set of reals. (Contributed by NM, 8-Oct-2005.) (Revised by AV, 4-Sep-2020.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → inf(𝐴, ℝ, < ) ∈ ℝ) | ||
| Theorem | infrenegsup 12126* | The infimum of a set of reals 𝐴 is the negative of the supremum of the negatives of its elements. The antecedent ensures that 𝐴 is nonempty and has a lower bound. (Contributed by NM, 14-Jun-2005.) (Revised by AV, 4-Sep-2020.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → inf(𝐴, ℝ, < ) = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}, ℝ, < )) | ||
| Theorem | infregelb 12127* | Any lower bound of a nonempty set of real numbers is less than or equal to its infimum. (Contributed by Jeff Hankins, 1-Sep-2013.) (Revised by AV, 4-Sep-2020.) (Proof modification is discouraged.) |
| ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ inf(𝐴, ℝ, < ) ↔ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧)) | ||
| Theorem | infrelb 12128* | If a nonempty set of real numbers has a lower bound, its infimum is less than or equal to any of its elements. (Contributed by Jeff Hankins, 15-Sep-2013.) (Revised by AV, 4-Sep-2020.) |
| ⊢ ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝐵) → inf(𝐵, ℝ, < ) ≤ 𝐴) | ||
| Theorem | infrefilb 12129 | The infimum of a finite set of reals is less than or equal to any of its elements. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ ((𝐵 ⊆ ℝ ∧ 𝐵 ∈ Fin ∧ 𝐴 ∈ 𝐵) → inf(𝐵, ℝ, < ) ≤ 𝐴) | ||
| Theorem | supfirege 12130 | The supremum of a finite set of real numbers is greater than or equal to all the real numbers of the set. (Contributed by AV, 1-Oct-2019.) |
| ⊢ (𝜑 → 𝐵 ⊆ ℝ) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 = sup(𝐵, ℝ, < )) ⇒ ⊢ (𝜑 → 𝐶 ≤ 𝑆) | ||
| Theorem | neg1cn 12131 | -1 is a complex number. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| ⊢ -1 ∈ ℂ | ||
| Theorem | neg1rr 12132 | -1 is a real number. (Contributed by David A. Wheeler, 5-Dec-2018.) |
| ⊢ -1 ∈ ℝ | ||
| Theorem | neg1ne0 12133 | -1 is nonzero. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ -1 ≠ 0 | ||
| Theorem | neg1lt0 12134 | -1 is less than 0. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ -1 < 0 | ||
| Theorem | negneg1e1 12135 | --1 is 1. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ --1 = 1 | ||
| Theorem | inelr 12136 | The imaginary unit i is not a real number. (Contributed by NM, 6-May-1999.) |
| ⊢ ¬ i ∈ ℝ | ||
| Theorem | rimul 12137 | A real number times the imaginary unit is real only if the number is 0. (Contributed by NM, 28-May-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → 𝐴 = 0) | ||
| Theorem | cru 12138 | The representation of complex numbers in terms of real and imaginary parts is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷)) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
| Theorem | crne0 12139 | The real representation of complex numbers is nonzero iff one of its terms is nonzero. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ (𝐴 + (i · 𝐵)) ≠ 0)) | ||
| Theorem | creur 12140* | The real part of a complex number is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | ||
| Theorem | creui 12141* | The imaginary part of a complex number is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → ∃!𝑦 ∈ ℝ ∃𝑥 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | ||
| Theorem | cju 12142* | The complex conjugate of a complex number is unique. (Contributed by Mario Carneiro, 6-Nov-2013.) |
| ⊢ (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ)) | ||
| Theorem | ofsubeq0 12143 | Function analogue of subeq0 11408. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝐹 ∘f − 𝐺) = (𝐴 × {0}) ↔ 𝐹 = 𝐺)) | ||
| Theorem | ofnegsub 12144 | Function analogue of negsub 11430. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝐹 ∘f + ((𝐴 × {-1}) ∘f · 𝐺)) = (𝐹 ∘f − 𝐺)) | ||
| Theorem | ofsubge0 12145 | Function analogue of subge0 11651. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → ((𝐴 × {0}) ∘r ≤ (𝐹 ∘f − 𝐺) ↔ 𝐺 ∘r ≤ 𝐹)) | ||
| Syntax | cn 12146 | Extend class notation to include the class of positive integers. |
| class ℕ | ||
| Definition | df-nn 12147 |
Define the set of positive integers. Some authors, especially in analysis
books, call these the natural numbers, whereas other authors choose to
include 0 in their definition of natural numbers. Note that ℕ is a
subset of complex numbers (nnsscn 12151), in contrast to the more elementary
ordinal natural numbers ω, df-om 7807). See nnind 12164 for the
principle of mathematical induction. See df-n0 12403 for the set of
nonnegative integers ℕ0. See dfn2 12415
for ℕ defined in terms of
ℕ0.
This is a technical definition that helps us avoid the Axiom of Infinity ax-inf2 9556 in certain proofs. For a more conventional and intuitive definition ("the smallest set of reals containing 1 as well as the successor of every member") see dfnn3 12160 (or its slight variant dfnn2 12159). (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 3-May-2014.) |
| ⊢ ℕ = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “ ω) | ||
| Theorem | nnexALT 12148 | Alternate proof of nnex 12152, more direct, that makes use of ax-rep 5221. (Contributed by Mario Carneiro, 3-May-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ℕ ∈ V | ||
| Theorem | peano5nni 12149* | Peano's inductive postulate. Theorem I.36 (principle of mathematical induction) of [Apostol] p. 34. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ ((1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 + 1) ∈ 𝐴) → ℕ ⊆ 𝐴) | ||
| Theorem | nnssre 12150 | The positive integers are a subset of the reals. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.) |
| ⊢ ℕ ⊆ ℝ | ||
| Theorem | nnsscn 12151 | The positive integers are a subset of the complex numbers. Remark: this could also be proven from nnssre 12150 and ax-resscn 11085 at the cost of using more axioms. (Contributed by NM, 2-Aug-2004.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| ⊢ ℕ ⊆ ℂ | ||
| Theorem | nnex 12152 | The set of positive integers exists. (Contributed by NM, 3-Oct-1999.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ ℕ ∈ V | ||
| Theorem | nnre 12153 | A positive integer is a real number. (Contributed by NM, 18-Aug-1999.) |
| ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | ||
| Theorem | nncn 12154 | A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.) |
| ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℂ) | ||
| Theorem | nnrei 12155 | A positive integer is a real number. (Contributed by NM, 18-Aug-1999.) |
| ⊢ 𝐴 ∈ ℕ ⇒ ⊢ 𝐴 ∈ ℝ | ||
| Theorem | nncni 12156 | A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| ⊢ 𝐴 ∈ ℕ ⇒ ⊢ 𝐴 ∈ ℂ | ||
| Theorem | 1nn 12157 | Peano postulate: 1 is a positive integer. (Contributed by NM, 11-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ 1 ∈ ℕ | ||
| Theorem | peano2nn 12158 | Peano postulate: a successor of a positive integer is a positive integer. (Contributed by NM, 11-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ) | ||
| Theorem | dfnn2 12159* | Alternate definition of the set of positive integers. This was our original definition, before the current df-nn 12147 replaced it. This definition requires the axiom of infinity to ensure it has the properties we expect. (Contributed by Jeff Hankins, 12-Sep-2013.) (Revised by Mario Carneiro, 3-May-2014.) |
| ⊢ ℕ = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | ||
| Theorem | dfnn3 12160* | Alternate definition of the set of positive integers. Definition of positive integers in [Apostol] p. 22. (Contributed by NM, 3-Jul-2005.) |
| ⊢ ℕ = ∩ {𝑥 ∣ (𝑥 ⊆ ℝ ∧ 1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | ||
| Theorem | nnred 12161 | A positive integer is a real number. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
| Theorem | nncnd 12162 | A positive integer is a complex number. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℂ) | ||
| Theorem | peano2nnd 12163 | Peano postulate: a successor of a positive integer is a positive integer. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐴 + 1) ∈ ℕ) | ||
| Theorem | nnind 12164* | Principle of Mathematical Induction (inference schema). The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. See nnaddcl 12169 for an example of its use. See nn0ind 12589 for induction on nonnegative integers and uzind 12586, uzind4 12825 for induction on an arbitrary upper set of integers. See indstr 12835 for strong induction. See also nnindALT 12165. This is an alternative for Metamath 100 proof #74. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.) |
| ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ ℕ → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ ℕ → 𝜏) | ||
| Theorem | nnindALT 12165* |
Principle of Mathematical Induction (inference schema). The last four
hypotheses give us the substitution instances we need; the first two are
the induction step and the basis.
This ALT version of nnind 12164 has a different hypothesis order. It may be easier to use with the Metamath program Proof Assistant, because "MM-PA> ASSIGN LAST" will be applied to the substitution instances first. We may eventually use this one as the official version. You may use either version. After the proof is complete, the ALT version can be changed to the non-ALT version with "MM-PA> MINIMIZE_WITH nnind / MAYGROW". (Contributed by NM, 7-Dec-2005.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ (𝑦 ∈ ℕ → (𝜒 → 𝜃)) & ⊢ 𝜓 & ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) ⇒ ⊢ (𝐴 ∈ ℕ → 𝜏) | ||
| Theorem | nnindd 12166* | Principle of Mathematical Induction (inference schema) on integers, a deduction version. (Contributed by Thierry Arnoux, 19-Jul-2020.) |
| ⊢ (𝑥 = 1 → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜓 ↔ 𝜏)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) & ⊢ (𝜑 → 𝜒) & ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ) ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → 𝜂) | ||
| Theorem | nn1m1nn 12167 | Every positive integer is one or a successor. (Contributed by Mario Carneiro, 16-May-2014.) |
| ⊢ (𝐴 ∈ ℕ → (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ)) | ||
| Theorem | nn1suc 12168* | If a statement holds for 1 and also holds for a successor, it holds for all positive integers. The first three hypotheses give us the substitution instances we need; the last two show that it holds for 1 and for a successor. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
| ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜃)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ ℕ → 𝜒) ⇒ ⊢ (𝐴 ∈ ℕ → 𝜃) | ||
| Theorem | nnaddcl 12169 | Closure of addition of positive integers, proved by induction on the second addend. (Contributed by NM, 12-Jan-1997.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) ∈ ℕ) | ||
| Theorem | nnmulcl 12170 | Closure of multiplication of positive integers. (Contributed by NM, 12-Jan-1997.) Remove dependency on ax-mulcom 11092 and ax-mulass 11094. (Revised by Steven Nguyen, 24-Sep-2022.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ) | ||
| Theorem | nnmulcli 12171 | Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ ⇒ ⊢ (𝐴 · 𝐵) ∈ ℕ | ||
| Theorem | nnmtmip 12172 | "Minus times minus is plus, The reason for this we need not discuss." (W. H. Auden, as quoted in M. Guillen "Bridges to Infinity", p. 64, see also Metamath Book, section 1.1.1, p. 5) This statement, formalized to "The product of two negative integers is a positive integer", is proved by the following theorem, therefore it actually need not be discussed anymore. "The reason for this" is that (-𝐴 · -𝐵) = (𝐴 · 𝐵) for all complex numbers 𝐴 and 𝐵 because of mul2neg 11577, 𝐴 and 𝐵 are complex numbers because of nncn 12154, and (𝐴 · 𝐵) ∈ ℕ because of nnmulcl 12170. This also holds for positive reals, see rpmtmip 12937. Note that the opposites -𝐴 and -𝐵 of the positive integers 𝐴 and 𝐵 are negative integers. (Contributed by AV, 23-Dec-2022.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (-𝐴 · -𝐵) ∈ ℕ) | ||
| Theorem | nn2ge 12173* | There exists a positive integer greater than or equal to any two others. (Contributed by NM, 18-Aug-1999.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ (𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥)) | ||
| Theorem | nnge1 12174 | A positive integer is one or greater. (Contributed by NM, 25-Aug-1999.) |
| ⊢ (𝐴 ∈ ℕ → 1 ≤ 𝐴) | ||
| Theorem | nngt1ne1 12175 | A positive integer is greater than one iff it is not equal to one. (Contributed by NM, 7-Oct-2004.) |
| ⊢ (𝐴 ∈ ℕ → (1 < 𝐴 ↔ 𝐴 ≠ 1)) | ||
| Theorem | nnle1eq1 12176 | A positive integer is less than or equal to one iff it is equal to one. (Contributed by NM, 3-Apr-2005.) |
| ⊢ (𝐴 ∈ ℕ → (𝐴 ≤ 1 ↔ 𝐴 = 1)) | ||
| Theorem | nngt0 12177 | A positive integer is positive. (Contributed by NM, 26-Sep-1999.) |
| ⊢ (𝐴 ∈ ℕ → 0 < 𝐴) | ||
| Theorem | nnnlt1 12178 | A positive integer is not less than one. (Contributed by NM, 18-Jan-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝐴 ∈ ℕ → ¬ 𝐴 < 1) | ||
| Theorem | nnnle0 12179 | A positive integer is not less than or equal to zero. (Contributed by AV, 13-May-2020.) |
| ⊢ (𝐴 ∈ ℕ → ¬ 𝐴 ≤ 0) | ||
| Theorem | nnne0 12180 | A positive integer is nonzero. See nnne0ALT 12184 for a shorter proof using ax-pre-mulgt0 11105. This proof avoids 0lt1 11660, and thus ax-pre-mulgt0 11105, by splitting ax-1ne0 11097 into the two separate cases 0 < 1 and 1 < 0. (Contributed by NM, 27-Sep-1999.) Remove dependency on ax-pre-mulgt0 11105. (Revised by Steven Nguyen, 30-Jan-2023.) |
| ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) | ||
| Theorem | nnneneg 12181 | No positive integer is equal to its negation. (Contributed by AV, 20-Jun-2023.) |
| ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ -𝐴) | ||
| Theorem | 0nnn 12182 | Zero is not a positive integer. (Contributed by NM, 25-Aug-1999.) Remove dependency on ax-pre-mulgt0 11105. (Revised by Steven Nguyen, 30-Jan-2023.) |
| ⊢ ¬ 0 ∈ ℕ | ||
| Theorem | 0nnnALT 12183 | Alternate proof of 0nnn 12182, which requires ax-pre-mulgt0 11105 but is not based on nnne0 12180 (and which can therefore be used in nnne0ALT 12184). (Contributed by NM, 25-Aug-1999.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ ¬ 0 ∈ ℕ | ||
| Theorem | nnne0ALT 12184 | Alternate version of nnne0 12180. A positive integer is nonzero. (Contributed by NM, 27-Sep-1999.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) | ||
| Theorem | nngt0i 12185 | A positive integer is positive (inference version). (Contributed by NM, 17-Sep-1999.) |
| ⊢ 𝐴 ∈ ℕ ⇒ ⊢ 0 < 𝐴 | ||
| Theorem | nnne0i 12186 | A positive integer is nonzero (inference version). (Contributed by NM, 25-Aug-1999.) |
| ⊢ 𝐴 ∈ ℕ ⇒ ⊢ 𝐴 ≠ 0 | ||
| Theorem | nndivre 12187 | The quotient of a real and a positive integer is real. (Contributed by NM, 28-Nov-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) ∈ ℝ) | ||
| Theorem | nnrecre 12188 | The reciprocal of a positive integer is real. (Contributed by NM, 8-Feb-2008.) |
| ⊢ (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ) | ||
| Theorem | nnrecgt0 12189 | The reciprocal of a positive integer is positive. (Contributed by NM, 25-Aug-1999.) |
| ⊢ (𝐴 ∈ ℕ → 0 < (1 / 𝐴)) | ||
| Theorem | nnsub 12190 | Subtraction of positive integers. (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 16-May-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ (𝐵 − 𝐴) ∈ ℕ)) | ||
| Theorem | nnsubi 12191 | Subtraction of positive integers. (Contributed by NM, 19-Aug-2001.) |
| ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ ⇒ ⊢ (𝐴 < 𝐵 ↔ (𝐵 − 𝐴) ∈ ℕ) | ||
| Theorem | nndiv 12192* | Two ways to express "𝐴 divides 𝐵 " for positive integers. (Contributed by NM, 3-Feb-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑥 ∈ ℕ (𝐴 · 𝑥) = 𝐵 ↔ (𝐵 / 𝐴) ∈ ℕ)) | ||
| Theorem | nndivtr 12193 | Transitive property of divisibility: if 𝐴 divides 𝐵 and 𝐵 divides 𝐶, then 𝐴 divides 𝐶. Typically, 𝐶 would be an integer, although the theorem holds for complex 𝐶. (Contributed by NM, 3-May-2005.) |
| ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) ∧ ((𝐵 / 𝐴) ∈ ℕ ∧ (𝐶 / 𝐵) ∈ ℕ)) → (𝐶 / 𝐴) ∈ ℕ) | ||
| Theorem | nnge1d 12194 | A positive integer is one or greater. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 1 ≤ 𝐴) | ||
| Theorem | nngt0d 12195 | A positive integer is positive. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 0 < 𝐴) | ||
| Theorem | nnne0d 12196 | A positive integer is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝐴 ≠ 0) | ||
| Theorem | nnrecred 12197 | The reciprocal of a positive integer is real. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ) | ||
| Theorem | nnaddcld 12198 | Closure of addition of positive integers. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℕ) | ||
| Theorem | nnmulcld 12199 | Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℕ) | ||
| Theorem | nndivred 12200 | A positive integer is one or greater. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐴 / 𝐵) ∈ ℝ) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |