Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > negiso | Structured version Visualization version GIF version |
Description: Negation is an order anti-isomorphism of the real numbers, which is its own inverse. (Contributed by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
negiso.1 | ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ -𝑥) |
Ref | Expression |
---|---|
negiso | ⊢ (𝐹 Isom < , ◡ < (ℝ, ℝ) ∧ ◡𝐹 = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negiso.1 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ -𝑥) | |
2 | simpr 485 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) | |
3 | 2 | renegcld 11402 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → -𝑥 ∈ ℝ) |
4 | simpr 485 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ) | |
5 | 4 | renegcld 11402 | . . . . . 6 ⊢ ((⊤ ∧ 𝑦 ∈ ℝ) → -𝑦 ∈ ℝ) |
6 | recn 10961 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℂ) | |
7 | recn 10961 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℂ) | |
8 | negcon2 11274 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = -𝑦 ↔ 𝑦 = -𝑥)) | |
9 | 6, 7, 8 | syl2an 596 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 = -𝑦 ↔ 𝑦 = -𝑥)) |
10 | 9 | adantl 482 | . . . . . 6 ⊢ ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 = -𝑦 ↔ 𝑦 = -𝑥)) |
11 | 1, 3, 5, 10 | f1ocnv2d 7522 | . . . . 5 ⊢ (⊤ → (𝐹:ℝ–1-1-onto→ℝ ∧ ◡𝐹 = (𝑦 ∈ ℝ ↦ -𝑦))) |
12 | 11 | mptru 1546 | . . . 4 ⊢ (𝐹:ℝ–1-1-onto→ℝ ∧ ◡𝐹 = (𝑦 ∈ ℝ ↦ -𝑦)) |
13 | 12 | simpli 484 | . . 3 ⊢ 𝐹:ℝ–1-1-onto→ℝ |
14 | ltneg 11475 | . . . . . 6 ⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 < 𝑦 ↔ -𝑦 < -𝑧)) | |
15 | negex 11219 | . . . . . . 7 ⊢ -𝑧 ∈ V | |
16 | negex 11219 | . . . . . . 7 ⊢ -𝑦 ∈ V | |
17 | 15, 16 | brcnv 5791 | . . . . . 6 ⊢ (-𝑧◡ < -𝑦 ↔ -𝑦 < -𝑧) |
18 | 14, 17 | bitr4di 289 | . . . . 5 ⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 < 𝑦 ↔ -𝑧◡ < -𝑦)) |
19 | negeq 11213 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → -𝑥 = -𝑧) | |
20 | 19, 1, 15 | fvmpt 6875 | . . . . . 6 ⊢ (𝑧 ∈ ℝ → (𝐹‘𝑧) = -𝑧) |
21 | negeq 11213 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → -𝑥 = -𝑦) | |
22 | 21, 1, 16 | fvmpt 6875 | . . . . . 6 ⊢ (𝑦 ∈ ℝ → (𝐹‘𝑦) = -𝑦) |
23 | 20, 22 | breqan12d 5090 | . . . . 5 ⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝐹‘𝑧)◡ < (𝐹‘𝑦) ↔ -𝑧◡ < -𝑦)) |
24 | 18, 23 | bitr4d 281 | . . . 4 ⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 < 𝑦 ↔ (𝐹‘𝑧)◡ < (𝐹‘𝑦))) |
25 | 24 | rgen2 3120 | . . 3 ⊢ ∀𝑧 ∈ ℝ ∀𝑦 ∈ ℝ (𝑧 < 𝑦 ↔ (𝐹‘𝑧)◡ < (𝐹‘𝑦)) |
26 | df-isom 6442 | . . 3 ⊢ (𝐹 Isom < , ◡ < (ℝ, ℝ) ↔ (𝐹:ℝ–1-1-onto→ℝ ∧ ∀𝑧 ∈ ℝ ∀𝑦 ∈ ℝ (𝑧 < 𝑦 ↔ (𝐹‘𝑧)◡ < (𝐹‘𝑦)))) | |
27 | 13, 25, 26 | mpbir2an 708 | . 2 ⊢ 𝐹 Isom < , ◡ < (ℝ, ℝ) |
28 | negeq 11213 | . . . 4 ⊢ (𝑦 = 𝑥 → -𝑦 = -𝑥) | |
29 | 28 | cbvmptv 5187 | . . 3 ⊢ (𝑦 ∈ ℝ ↦ -𝑦) = (𝑥 ∈ ℝ ↦ -𝑥) |
30 | 12 | simpri 486 | . . 3 ⊢ ◡𝐹 = (𝑦 ∈ ℝ ↦ -𝑦) |
31 | 29, 30, 1 | 3eqtr4i 2776 | . 2 ⊢ ◡𝐹 = 𝐹 |
32 | 27, 31 | pm3.2i 471 | 1 ⊢ (𝐹 Isom < , ◡ < (ℝ, ℝ) ∧ ◡𝐹 = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ⊤wtru 1540 ∈ wcel 2106 ∀wral 3064 class class class wbr 5074 ↦ cmpt 5157 ◡ccnv 5588 –1-1-onto→wf1o 6432 ‘cfv 6433 Isom wiso 6434 ℂcc 10869 ℝcr 10870 < clt 11009 -cneg 11206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 |
This theorem is referenced by: infrenegsup 11958 |
Copyright terms: Public domain | W3C validator |