![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > negiso | Structured version Visualization version GIF version |
Description: Negation is an order anti-isomorphism of the real numbers, which is its own inverse. (Contributed by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
negiso.1 | ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ -𝑥) |
Ref | Expression |
---|---|
negiso | ⊢ (𝐹 Isom < , ◡ < (ℝ, ℝ) ∧ ◡𝐹 = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negiso.1 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ -𝑥) | |
2 | simpr 486 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) | |
3 | 2 | renegcld 11590 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → -𝑥 ∈ ℝ) |
4 | simpr 486 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ) | |
5 | 4 | renegcld 11590 | . . . . . 6 ⊢ ((⊤ ∧ 𝑦 ∈ ℝ) → -𝑦 ∈ ℝ) |
6 | recn 11149 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℂ) | |
7 | recn 11149 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℂ) | |
8 | negcon2 11462 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = -𝑦 ↔ 𝑦 = -𝑥)) | |
9 | 6, 7, 8 | syl2an 597 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 = -𝑦 ↔ 𝑦 = -𝑥)) |
10 | 9 | adantl 483 | . . . . . 6 ⊢ ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 = -𝑦 ↔ 𝑦 = -𝑥)) |
11 | 1, 3, 5, 10 | f1ocnv2d 7610 | . . . . 5 ⊢ (⊤ → (𝐹:ℝ–1-1-onto→ℝ ∧ ◡𝐹 = (𝑦 ∈ ℝ ↦ -𝑦))) |
12 | 11 | mptru 1549 | . . . 4 ⊢ (𝐹:ℝ–1-1-onto→ℝ ∧ ◡𝐹 = (𝑦 ∈ ℝ ↦ -𝑦)) |
13 | 12 | simpli 485 | . . 3 ⊢ 𝐹:ℝ–1-1-onto→ℝ |
14 | ltneg 11663 | . . . . . 6 ⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 < 𝑦 ↔ -𝑦 < -𝑧)) | |
15 | negex 11407 | . . . . . . 7 ⊢ -𝑧 ∈ V | |
16 | negex 11407 | . . . . . . 7 ⊢ -𝑦 ∈ V | |
17 | 15, 16 | brcnv 5842 | . . . . . 6 ⊢ (-𝑧◡ < -𝑦 ↔ -𝑦 < -𝑧) |
18 | 14, 17 | bitr4di 289 | . . . . 5 ⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 < 𝑦 ↔ -𝑧◡ < -𝑦)) |
19 | negeq 11401 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → -𝑥 = -𝑧) | |
20 | 19, 1, 15 | fvmpt 6952 | . . . . . 6 ⊢ (𝑧 ∈ ℝ → (𝐹‘𝑧) = -𝑧) |
21 | negeq 11401 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → -𝑥 = -𝑦) | |
22 | 21, 1, 16 | fvmpt 6952 | . . . . . 6 ⊢ (𝑦 ∈ ℝ → (𝐹‘𝑦) = -𝑦) |
23 | 20, 22 | breqan12d 5125 | . . . . 5 ⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝐹‘𝑧)◡ < (𝐹‘𝑦) ↔ -𝑧◡ < -𝑦)) |
24 | 18, 23 | bitr4d 282 | . . . 4 ⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 < 𝑦 ↔ (𝐹‘𝑧)◡ < (𝐹‘𝑦))) |
25 | 24 | rgen2 3191 | . . 3 ⊢ ∀𝑧 ∈ ℝ ∀𝑦 ∈ ℝ (𝑧 < 𝑦 ↔ (𝐹‘𝑧)◡ < (𝐹‘𝑦)) |
26 | df-isom 6509 | . . 3 ⊢ (𝐹 Isom < , ◡ < (ℝ, ℝ) ↔ (𝐹:ℝ–1-1-onto→ℝ ∧ ∀𝑧 ∈ ℝ ∀𝑦 ∈ ℝ (𝑧 < 𝑦 ↔ (𝐹‘𝑧)◡ < (𝐹‘𝑦)))) | |
27 | 13, 25, 26 | mpbir2an 710 | . 2 ⊢ 𝐹 Isom < , ◡ < (ℝ, ℝ) |
28 | negeq 11401 | . . . 4 ⊢ (𝑦 = 𝑥 → -𝑦 = -𝑥) | |
29 | 28 | cbvmptv 5222 | . . 3 ⊢ (𝑦 ∈ ℝ ↦ -𝑦) = (𝑥 ∈ ℝ ↦ -𝑥) |
30 | 12 | simpri 487 | . . 3 ⊢ ◡𝐹 = (𝑦 ∈ ℝ ↦ -𝑦) |
31 | 29, 30, 1 | 3eqtr4i 2771 | . 2 ⊢ ◡𝐹 = 𝐹 |
32 | 27, 31 | pm3.2i 472 | 1 ⊢ (𝐹 Isom < , ◡ < (ℝ, ℝ) ∧ ◡𝐹 = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1542 ⊤wtru 1543 ∈ wcel 2107 ∀wral 3061 class class class wbr 5109 ↦ cmpt 5192 ◡ccnv 5636 –1-1-onto→wf1o 6499 ‘cfv 6500 Isom wiso 6501 ℂcc 11057 ℝcr 11058 < clt 11197 -cneg 11394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-br 5110 df-opab 5172 df-mpt 5193 df-id 5535 df-po 5549 df-so 5550 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-isom 6509 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-er 8654 df-en 8890 df-dom 8891 df-sdom 8892 df-pnf 11199 df-mnf 11200 df-xr 11201 df-ltxr 11202 df-le 11203 df-sub 11395 df-neg 11396 |
This theorem is referenced by: infrenegsup 12146 |
Copyright terms: Public domain | W3C validator |