MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negiso Structured version   Visualization version   GIF version

Theorem negiso 12191
Description: Negation is an order anti-isomorphism of the real numbers, which is its own inverse. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
negiso.1 𝐹 = (𝑥 ∈ ℝ ↦ -𝑥)
Assertion
Ref Expression
negiso (𝐹 Isom < , < (ℝ, ℝ) ∧ 𝐹 = 𝐹)

Proof of Theorem negiso
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 negiso.1 . . . . . 6 𝐹 = (𝑥 ∈ ℝ ↦ -𝑥)
2 simpr 484 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
32renegcld 11638 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ) → -𝑥 ∈ ℝ)
4 simpr 484 . . . . . . 7 ((⊤ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
54renegcld 11638 . . . . . 6 ((⊤ ∧ 𝑦 ∈ ℝ) → -𝑦 ∈ ℝ)
6 recn 11196 . . . . . . . 8 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
7 recn 11196 . . . . . . . 8 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
8 negcon2 11510 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = -𝑦𝑦 = -𝑥))
96, 7, 8syl2an 595 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 = -𝑦𝑦 = -𝑥))
109adantl 481 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 = -𝑦𝑦 = -𝑥))
111, 3, 5, 10f1ocnv2d 7652 . . . . 5 (⊤ → (𝐹:ℝ–1-1-onto→ℝ ∧ 𝐹 = (𝑦 ∈ ℝ ↦ -𝑦)))
1211mptru 1540 . . . 4 (𝐹:ℝ–1-1-onto→ℝ ∧ 𝐹 = (𝑦 ∈ ℝ ↦ -𝑦))
1312simpli 483 . . 3 𝐹:ℝ–1-1-onto→ℝ
14 ltneg 11711 . . . . . 6 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 < 𝑦 ↔ -𝑦 < -𝑧))
15 negex 11455 . . . . . . 7 -𝑧 ∈ V
16 negex 11455 . . . . . . 7 -𝑦 ∈ V
1715, 16brcnv 5872 . . . . . 6 (-𝑧 < -𝑦 ↔ -𝑦 < -𝑧)
1814, 17bitr4di 289 . . . . 5 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 < 𝑦 ↔ -𝑧 < -𝑦))
19 negeq 11449 . . . . . . 7 (𝑥 = 𝑧 → -𝑥 = -𝑧)
2019, 1, 15fvmpt 6988 . . . . . 6 (𝑧 ∈ ℝ → (𝐹𝑧) = -𝑧)
21 negeq 11449 . . . . . . 7 (𝑥 = 𝑦 → -𝑥 = -𝑦)
2221, 1, 16fvmpt 6988 . . . . . 6 (𝑦 ∈ ℝ → (𝐹𝑦) = -𝑦)
2320, 22breqan12d 5154 . . . . 5 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝐹𝑧) < (𝐹𝑦) ↔ -𝑧 < -𝑦))
2418, 23bitr4d 282 . . . 4 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 < 𝑦 ↔ (𝐹𝑧) < (𝐹𝑦)))
2524rgen2 3189 . . 3 𝑧 ∈ ℝ ∀𝑦 ∈ ℝ (𝑧 < 𝑦 ↔ (𝐹𝑧) < (𝐹𝑦))
26 df-isom 6542 . . 3 (𝐹 Isom < , < (ℝ, ℝ) ↔ (𝐹:ℝ–1-1-onto→ℝ ∧ ∀𝑧 ∈ ℝ ∀𝑦 ∈ ℝ (𝑧 < 𝑦 ↔ (𝐹𝑧) < (𝐹𝑦))))
2713, 25, 26mpbir2an 708 . 2 𝐹 Isom < , < (ℝ, ℝ)
28 negeq 11449 . . . 4 (𝑦 = 𝑥 → -𝑦 = -𝑥)
2928cbvmptv 5251 . . 3 (𝑦 ∈ ℝ ↦ -𝑦) = (𝑥 ∈ ℝ ↦ -𝑥)
3012simpri 485 . . 3 𝐹 = (𝑦 ∈ ℝ ↦ -𝑦)
3129, 30, 13eqtr4i 2762 . 2 𝐹 = 𝐹
3227, 31pm3.2i 470 1 (𝐹 Isom < , < (ℝ, ℝ) ∧ 𝐹 = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1533  wtru 1534  wcel 2098  wral 3053   class class class wbr 5138  cmpt 5221  ccnv 5665  1-1-ontowf1o 6532  cfv 6533   Isom wiso 6534  cc 11104  cr 11105   < clt 11245  -cneg 11442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-po 5578  df-so 5579  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444
This theorem is referenced by:  infrenegsup  12194
  Copyright terms: Public domain W3C validator