| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negiso | Structured version Visualization version GIF version | ||
| Description: Negation is an order anti-isomorphism of the real numbers, which is its own inverse. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| Ref | Expression |
|---|---|
| negiso.1 | ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ -𝑥) |
| Ref | Expression |
|---|---|
| negiso | ⊢ (𝐹 Isom < , ◡ < (ℝ, ℝ) ∧ ◡𝐹 = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negiso.1 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ -𝑥) | |
| 2 | simpr 484 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) | |
| 3 | 2 | renegcld 11605 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → -𝑥 ∈ ℝ) |
| 4 | simpr 484 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ) | |
| 5 | 4 | renegcld 11605 | . . . . . 6 ⊢ ((⊤ ∧ 𝑦 ∈ ℝ) → -𝑦 ∈ ℝ) |
| 6 | recn 11158 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℂ) | |
| 7 | recn 11158 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℂ) | |
| 8 | negcon2 11475 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = -𝑦 ↔ 𝑦 = -𝑥)) | |
| 9 | 6, 7, 8 | syl2an 596 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 = -𝑦 ↔ 𝑦 = -𝑥)) |
| 10 | 9 | adantl 481 | . . . . . 6 ⊢ ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 = -𝑦 ↔ 𝑦 = -𝑥)) |
| 11 | 1, 3, 5, 10 | f1ocnv2d 7642 | . . . . 5 ⊢ (⊤ → (𝐹:ℝ–1-1-onto→ℝ ∧ ◡𝐹 = (𝑦 ∈ ℝ ↦ -𝑦))) |
| 12 | 11 | mptru 1547 | . . . 4 ⊢ (𝐹:ℝ–1-1-onto→ℝ ∧ ◡𝐹 = (𝑦 ∈ ℝ ↦ -𝑦)) |
| 13 | 12 | simpli 483 | . . 3 ⊢ 𝐹:ℝ–1-1-onto→ℝ |
| 14 | ltneg 11678 | . . . . . 6 ⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 < 𝑦 ↔ -𝑦 < -𝑧)) | |
| 15 | negex 11419 | . . . . . . 7 ⊢ -𝑧 ∈ V | |
| 16 | negex 11419 | . . . . . . 7 ⊢ -𝑦 ∈ V | |
| 17 | 15, 16 | brcnv 5846 | . . . . . 6 ⊢ (-𝑧◡ < -𝑦 ↔ -𝑦 < -𝑧) |
| 18 | 14, 17 | bitr4di 289 | . . . . 5 ⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 < 𝑦 ↔ -𝑧◡ < -𝑦)) |
| 19 | negeq 11413 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → -𝑥 = -𝑧) | |
| 20 | 19, 1, 15 | fvmpt 6968 | . . . . . 6 ⊢ (𝑧 ∈ ℝ → (𝐹‘𝑧) = -𝑧) |
| 21 | negeq 11413 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → -𝑥 = -𝑦) | |
| 22 | 21, 1, 16 | fvmpt 6968 | . . . . . 6 ⊢ (𝑦 ∈ ℝ → (𝐹‘𝑦) = -𝑦) |
| 23 | 20, 22 | breqan12d 5123 | . . . . 5 ⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝐹‘𝑧)◡ < (𝐹‘𝑦) ↔ -𝑧◡ < -𝑦)) |
| 24 | 18, 23 | bitr4d 282 | . . . 4 ⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 < 𝑦 ↔ (𝐹‘𝑧)◡ < (𝐹‘𝑦))) |
| 25 | 24 | rgen2 3177 | . . 3 ⊢ ∀𝑧 ∈ ℝ ∀𝑦 ∈ ℝ (𝑧 < 𝑦 ↔ (𝐹‘𝑧)◡ < (𝐹‘𝑦)) |
| 26 | df-isom 6520 | . . 3 ⊢ (𝐹 Isom < , ◡ < (ℝ, ℝ) ↔ (𝐹:ℝ–1-1-onto→ℝ ∧ ∀𝑧 ∈ ℝ ∀𝑦 ∈ ℝ (𝑧 < 𝑦 ↔ (𝐹‘𝑧)◡ < (𝐹‘𝑦)))) | |
| 27 | 13, 25, 26 | mpbir2an 711 | . 2 ⊢ 𝐹 Isom < , ◡ < (ℝ, ℝ) |
| 28 | negeq 11413 | . . . 4 ⊢ (𝑦 = 𝑥 → -𝑦 = -𝑥) | |
| 29 | 28 | cbvmptv 5211 | . . 3 ⊢ (𝑦 ∈ ℝ ↦ -𝑦) = (𝑥 ∈ ℝ ↦ -𝑥) |
| 30 | 12 | simpri 485 | . . 3 ⊢ ◡𝐹 = (𝑦 ∈ ℝ ↦ -𝑦) |
| 31 | 29, 30, 1 | 3eqtr4i 2762 | . 2 ⊢ ◡𝐹 = 𝐹 |
| 32 | 27, 31 | pm3.2i 470 | 1 ⊢ (𝐹 Isom < , ◡ < (ℝ, ℝ) ∧ ◡𝐹 = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ∀wral 3044 class class class wbr 5107 ↦ cmpt 5188 ◡ccnv 5637 –1-1-onto→wf1o 6510 ‘cfv 6511 Isom wiso 6512 ℂcc 11066 ℝcr 11067 < clt 11208 -cneg 11406 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 |
| This theorem is referenced by: infrenegsup 12166 |
| Copyright terms: Public domain | W3C validator |