Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfmember2 Structured version   Visualization version   GIF version

Theorem dfmember2 36785
Description: Alternate definition of the membership equivalence relation. (Contributed by Peter Mazsa, 25-Sep-2021.)
Assertion
Ref Expression
dfmember2 ( MembEr 𝐴 ↔ ( EqvRel ∼ 𝐴 ∧ (dom ∼ 𝐴 /𝐴) = 𝐴))

Proof of Theorem dfmember2
StepHypRef Expression
1 dfmember 36784 . 2 ( MembEr 𝐴 ↔ ∼ 𝐴 ErALTV 𝐴)
2 dferALTV2 36780 . 2 ( ∼ 𝐴 ErALTV 𝐴 ↔ ( EqvRel ∼ 𝐴 ∧ (dom ∼ 𝐴 /𝐴) = 𝐴))
31, 2bitri 274 1 ( MembEr 𝐴 ↔ ( EqvRel ∼ 𝐴 ∧ (dom ∼ 𝐴 /𝐴) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  dom cdm 5589   / cqs 8497  ccoels 36334   EqvRel weqvrel 36350   ErALTV werALTV 36359   MembEr wmember 36361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ec 8500  df-qs 8504  df-coels 36538  df-refrel 36630  df-symrel 36658  df-trrel 36688  df-eqvrel 36698  df-dmqs 36752  df-erALTV 36776  df-member 36778
This theorem is referenced by:  dfmember3  36786
  Copyright terms: Public domain W3C validator