Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfmember3 | Structured version Visualization version GIF version |
Description: Alternate definition of the membership equivalence relation. (Contributed by Peter Mazsa, 26-Sep-2021.) (Revised by Peter Mazsa, 17-Jul-2023.) |
Ref | Expression |
---|---|
dfmember3 | ⊢ ( MembEr 𝐴 ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfmember2 36785 | . 2 ⊢ ( MembEr 𝐴 ↔ ( EqvRel ∼ 𝐴 ∧ (dom ∼ 𝐴 / ∼ 𝐴) = 𝐴)) | |
2 | dfcoeleqvrel 36735 | . . . 4 ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ∼ 𝐴) | |
3 | 2 | bicomi 223 | . . 3 ⊢ ( EqvRel ∼ 𝐴 ↔ CoElEqvRel 𝐴) |
4 | dmqscoelseq 36773 | . . 3 ⊢ ((dom ∼ 𝐴 / ∼ 𝐴) = 𝐴 ↔ (∪ 𝐴 / ∼ 𝐴) = 𝐴) | |
5 | 3, 4 | anbi12i 627 | . 2 ⊢ (( EqvRel ∼ 𝐴 ∧ (dom ∼ 𝐴 / ∼ 𝐴) = 𝐴) ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) |
6 | 1, 5 | bitri 274 | 1 ⊢ ( MembEr 𝐴 ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∪ cuni 4839 dom cdm 5589 / cqs 8497 ∼ ccoels 36334 EqvRel weqvrel 36350 CoElEqvRel wcoeleqvrel 36352 MembEr wmember 36361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-eprel 5495 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ec 8500 df-qs 8504 df-coss 36537 df-coels 36538 df-refrel 36630 df-symrel 36658 df-trrel 36688 df-eqvrel 36698 df-coeleqvrel 36700 df-dmqs 36752 df-erALTV 36776 df-member 36778 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |