Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfmember3 | Structured version Visualization version GIF version |
Description: Alternate definition of the membership equivalence relation. (Contributed by Peter Mazsa, 26-Sep-2021.) (Revised by Peter Mazsa, 17-Jul-2023.) |
Ref | Expression |
---|---|
dfmember3 | ⊢ ( MembEr 𝐴 ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfmember2 36712 | . 2 ⊢ ( MembEr 𝐴 ↔ ( EqvRel ∼ 𝐴 ∧ (dom ∼ 𝐴 / ∼ 𝐴) = 𝐴)) | |
2 | dfcoeleqvrel 36662 | . . . 4 ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ∼ 𝐴) | |
3 | 2 | bicomi 223 | . . 3 ⊢ ( EqvRel ∼ 𝐴 ↔ CoElEqvRel 𝐴) |
4 | dmqscoelseq 36700 | . . 3 ⊢ ((dom ∼ 𝐴 / ∼ 𝐴) = 𝐴 ↔ (∪ 𝐴 / ∼ 𝐴) = 𝐴) | |
5 | 3, 4 | anbi12i 626 | . 2 ⊢ (( EqvRel ∼ 𝐴 ∧ (dom ∼ 𝐴 / ∼ 𝐴) = 𝐴) ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) |
6 | 1, 5 | bitri 274 | 1 ⊢ ( MembEr 𝐴 ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∪ cuni 4836 dom cdm 5580 / cqs 8455 ∼ ccoels 36261 EqvRel weqvrel 36277 CoElEqvRel wcoeleqvrel 36279 MembEr wmember 36288 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-eprel 5486 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ec 8458 df-qs 8462 df-coss 36464 df-coels 36465 df-refrel 36557 df-symrel 36585 df-trrel 36615 df-eqvrel 36625 df-coeleqvrel 36627 df-dmqs 36679 df-erALTV 36703 df-member 36705 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |