Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfmember3 Structured version   Visualization version   GIF version

Theorem dfmember3 36786
Description: Alternate definition of the membership equivalence relation. (Contributed by Peter Mazsa, 26-Sep-2021.) (Revised by Peter Mazsa, 17-Jul-2023.)
Assertion
Ref Expression
dfmember3 ( MembEr 𝐴 ↔ ( CoElEqvRel 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))

Proof of Theorem dfmember3
StepHypRef Expression
1 dfmember2 36785 . 2 ( MembEr 𝐴 ↔ ( EqvRel ∼ 𝐴 ∧ (dom ∼ 𝐴 /𝐴) = 𝐴))
2 dfcoeleqvrel 36735 . . . 4 ( CoElEqvRel 𝐴 ↔ EqvRel ∼ 𝐴)
32bicomi 223 . . 3 ( EqvRel ∼ 𝐴 ↔ CoElEqvRel 𝐴)
4 dmqscoelseq 36773 . . 3 ((dom ∼ 𝐴 /𝐴) = 𝐴 ↔ ( 𝐴 /𝐴) = 𝐴)
53, 4anbi12i 627 . 2 (( EqvRel ∼ 𝐴 ∧ (dom ∼ 𝐴 /𝐴) = 𝐴) ↔ ( CoElEqvRel 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))
61, 5bitri 274 1 ( MembEr 𝐴 ↔ ( CoElEqvRel 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539   cuni 4839  dom cdm 5589   / cqs 8497  ccoels 36334   EqvRel weqvrel 36350   CoElEqvRel wcoeleqvrel 36352   MembEr wmember 36361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-eprel 5495  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ec 8500  df-qs 8504  df-coss 36537  df-coels 36538  df-refrel 36630  df-symrel 36658  df-trrel 36688  df-eqvrel 36698  df-coeleqvrel 36700  df-dmqs 36752  df-erALTV 36776  df-member 36778
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator