Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfmpt3 | Structured version Visualization version GIF version |
Description: Alternate definition for the maps-to notation df-mpt 5113. (Contributed by Mario Carneiro, 30-Dec-2016.) |
Ref | Expression |
---|---|
dfmpt3 | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = ∪ 𝑥 ∈ 𝐴 ({𝑥} × {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpt 5113 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
2 | velsn 4538 | . . . . . . 7 ⊢ (𝑦 ∈ {𝐵} ↔ 𝑦 = 𝐵) | |
3 | 2 | anbi2i 625 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝐵}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) |
4 | 3 | anbi2i 625 | . . . . 5 ⊢ ((𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝐵})) ↔ (𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵))) |
5 | 4 | 2exbii 1850 | . . . 4 ⊢ (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝐵})) ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵))) |
6 | eliunxp 5677 | . . . 4 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × {𝐵}) ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝐵}))) | |
7 | elopab 5384 | . . . 4 ⊢ (𝑧 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵))) | |
8 | 5, 6, 7 | 3bitr4i 306 | . . 3 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × {𝐵}) ↔ 𝑧 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)}) |
9 | 8 | eqriv 2755 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × {𝐵}) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
10 | 1, 9 | eqtr4i 2784 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = ∪ 𝑥 ∈ 𝐴 ({𝑥} × {𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 = wceq 1538 ∃wex 1781 ∈ wcel 2111 {csn 4522 〈cop 4528 ∪ ciun 4883 {copab 5094 ↦ cmpt 5112 × cxp 5522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-iun 4885 df-opab 5095 df-mpt 5113 df-xp 5530 df-rel 5531 |
This theorem is referenced by: dfmpt 6897 taylpfval 25059 indval2 31501 |
Copyright terms: Public domain | W3C validator |