MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfmpt3 Structured version   Visualization version   GIF version

Theorem dfmpt3 6675
Description: Alternate definition for the maps-to notation df-mpt 5223. (Contributed by Mario Carneiro, 30-Dec-2016.)
Assertion
Ref Expression
dfmpt3 (𝑥𝐴𝐵) = 𝑥𝐴 ({𝑥} × {𝐵})

Proof of Theorem dfmpt3
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mpt 5223 . 2 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
2 velsn 4637 . . . . . . 7 (𝑦 ∈ {𝐵} ↔ 𝑦 = 𝐵)
32anbi2i 622 . . . . . 6 ((𝑥𝐴𝑦 ∈ {𝐵}) ↔ (𝑥𝐴𝑦 = 𝐵))
43anbi2i 622 . . . . 5 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦 ∈ {𝐵})) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦 = 𝐵)))
542exbii 1843 . . . 4 (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦 ∈ {𝐵})) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦 = 𝐵)))
6 eliunxp 5828 . . . 4 (𝑧 𝑥𝐴 ({𝑥} × {𝐵}) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦 ∈ {𝐵})))
7 elopab 5518 . . . 4 (𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦 = 𝐵)))
85, 6, 73bitr4i 303 . . 3 (𝑧 𝑥𝐴 ({𝑥} × {𝐵}) ↔ 𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)})
98eqriv 2721 . 2 𝑥𝐴 ({𝑥} × {𝐵}) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
101, 9eqtr4i 2755 1 (𝑥𝐴𝐵) = 𝑥𝐴 ({𝑥} × {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1533  wex 1773  wcel 2098  {csn 4621  cop 4627   ciun 4988  {copab 5201  cmpt 5222   × cxp 5665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-iun 4990  df-opab 5202  df-mpt 5223  df-xp 5673  df-rel 5674
This theorem is referenced by:  dfmpt  7135  taylpfval  26242  indval2  33532
  Copyright terms: Public domain W3C validator