Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfmpt | Structured version Visualization version GIF version |
Description: Alternate definition for the maps-to notation df-mpt 5117 (although it requires that 𝐵 be a set). (Contributed by NM, 24-Aug-2010.) (Revised by Mario Carneiro, 30-Dec-2016.) |
Ref | Expression |
---|---|
dfmpt.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
dfmpt | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = ∪ 𝑥 ∈ 𝐴 {〈𝑥, 𝐵〉} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfmpt3 6470 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = ∪ 𝑥 ∈ 𝐴 ({𝑥} × {𝐵}) | |
2 | vex 3413 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | dfmpt.1 | . . . . 5 ⊢ 𝐵 ∈ V | |
4 | 2, 3 | xpsn 6900 | . . . 4 ⊢ ({𝑥} × {𝐵}) = {〈𝑥, 𝐵〉} |
5 | 4 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ({𝑥} × {𝐵}) = {〈𝑥, 𝐵〉}) |
6 | 5 | iuneq2i 4907 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × {𝐵}) = ∪ 𝑥 ∈ 𝐴 {〈𝑥, 𝐵〉} |
7 | 1, 6 | eqtri 2781 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = ∪ 𝑥 ∈ 𝐴 {〈𝑥, 𝐵〉} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∈ wcel 2111 Vcvv 3409 {csn 4525 〈cop 4531 ∪ ciun 4886 ↦ cmpt 5116 × cxp 5526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 |
This theorem is referenced by: fnasrn 6904 funiun 6906 dfmpo 7808 |
Copyright terms: Public domain | W3C validator |