MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfmpt Structured version   Visualization version   GIF version

Theorem dfmpt 7082
Description: Alternate definition for the maps-to notation df-mpt 5177 (although it requires that 𝐵 be a set). (Contributed by NM, 24-Aug-2010.) (Revised by Mario Carneiro, 30-Dec-2016.)
Hypothesis
Ref Expression
dfmpt.1 𝐵 ∈ V
Assertion
Ref Expression
dfmpt (𝑥𝐴𝐵) = 𝑥𝐴 {⟨𝑥, 𝐵⟩}

Proof of Theorem dfmpt
StepHypRef Expression
1 dfmpt3 6620 . 2 (𝑥𝐴𝐵) = 𝑥𝐴 ({𝑥} × {𝐵})
2 vex 3442 . . . . 5 𝑥 ∈ V
3 dfmpt.1 . . . . 5 𝐵 ∈ V
42, 3xpsn 7079 . . . 4 ({𝑥} × {𝐵}) = {⟨𝑥, 𝐵⟩}
54a1i 11 . . 3 (𝑥𝐴 → ({𝑥} × {𝐵}) = {⟨𝑥, 𝐵⟩})
65iuneq2i 4966 . 2 𝑥𝐴 ({𝑥} × {𝐵}) = 𝑥𝐴 {⟨𝑥, 𝐵⟩}
71, 6eqtri 2752 1 (𝑥𝐴𝐵) = 𝑥𝐴 {⟨𝑥, 𝐵⟩}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3438  {csn 4579  cop 4585   ciun 4944  cmpt 5176   × cxp 5621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493
This theorem is referenced by:  fnasrn  7083  funiun  7085  dfmpo  8042
  Copyright terms: Public domain W3C validator