| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfmpt | Structured version Visualization version GIF version | ||
| Description: Alternate definition for the maps-to notation df-mpt 5207 (although it requires that 𝐵 be a set). (Contributed by NM, 24-Aug-2010.) (Revised by Mario Carneiro, 30-Dec-2016.) |
| Ref | Expression |
|---|---|
| dfmpt.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| dfmpt | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = ∪ 𝑥 ∈ 𝐴 {〈𝑥, 𝐵〉} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfmpt3 6677 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = ∪ 𝑥 ∈ 𝐴 ({𝑥} × {𝐵}) | |
| 2 | vex 3468 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | dfmpt.1 | . . . . 5 ⊢ 𝐵 ∈ V | |
| 4 | 2, 3 | xpsn 7136 | . . . 4 ⊢ ({𝑥} × {𝐵}) = {〈𝑥, 𝐵〉} |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ({𝑥} × {𝐵}) = {〈𝑥, 𝐵〉}) |
| 6 | 5 | iuneq2i 4994 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × {𝐵}) = ∪ 𝑥 ∈ 𝐴 {〈𝑥, 𝐵〉} |
| 7 | 1, 6 | eqtri 2759 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = ∪ 𝑥 ∈ 𝐴 {〈𝑥, 𝐵〉} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3464 {csn 4606 〈cop 4612 ∪ ciun 4972 ↦ cmpt 5206 × cxp 5657 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 |
| This theorem is referenced by: fnasrn 7140 funiun 7142 dfmpo 8106 |
| Copyright terms: Public domain | W3C validator |