![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfmpt | Structured version Visualization version GIF version |
Description: Alternate definition for the maps-to notation df-mpt 5231 (although it requires that 𝐵 be a set). (Contributed by NM, 24-Aug-2010.) (Revised by Mario Carneiro, 30-Dec-2016.) |
Ref | Expression |
---|---|
dfmpt.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
dfmpt | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = ∪ 𝑥 ∈ 𝐴 {⟨𝑥, 𝐵⟩} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfmpt3 6681 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = ∪ 𝑥 ∈ 𝐴 ({𝑥} × {𝐵}) | |
2 | vex 3478 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | dfmpt.1 | . . . . 5 ⊢ 𝐵 ∈ V | |
4 | 2, 3 | xpsn 7135 | . . . 4 ⊢ ({𝑥} × {𝐵}) = {⟨𝑥, 𝐵⟩} |
5 | 4 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ({𝑥} × {𝐵}) = {⟨𝑥, 𝐵⟩}) |
6 | 5 | iuneq2i 5017 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × {𝐵}) = ∪ 𝑥 ∈ 𝐴 {⟨𝑥, 𝐵⟩} |
7 | 1, 6 | eqtri 2760 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = ∪ 𝑥 ∈ 𝐴 {⟨𝑥, 𝐵⟩} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 Vcvv 3474 {csn 4627 ⟨cop 4633 ∪ ciun 4996 ↦ cmpt 5230 × cxp 5673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 |
This theorem is referenced by: fnasrn 7139 funiun 7141 dfmpo 8084 |
Copyright terms: Public domain | W3C validator |