MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfmpt Structured version   Visualization version   GIF version

Theorem dfmpt 7139
Description: Alternate definition for the maps-to notation df-mpt 5207 (although it requires that 𝐵 be a set). (Contributed by NM, 24-Aug-2010.) (Revised by Mario Carneiro, 30-Dec-2016.)
Hypothesis
Ref Expression
dfmpt.1 𝐵 ∈ V
Assertion
Ref Expression
dfmpt (𝑥𝐴𝐵) = 𝑥𝐴 {⟨𝑥, 𝐵⟩}

Proof of Theorem dfmpt
StepHypRef Expression
1 dfmpt3 6677 . 2 (𝑥𝐴𝐵) = 𝑥𝐴 ({𝑥} × {𝐵})
2 vex 3468 . . . . 5 𝑥 ∈ V
3 dfmpt.1 . . . . 5 𝐵 ∈ V
42, 3xpsn 7136 . . . 4 ({𝑥} × {𝐵}) = {⟨𝑥, 𝐵⟩}
54a1i 11 . . 3 (𝑥𝐴 → ({𝑥} × {𝐵}) = {⟨𝑥, 𝐵⟩})
65iuneq2i 4994 . 2 𝑥𝐴 ({𝑥} × {𝐵}) = 𝑥𝐴 {⟨𝑥, 𝐵⟩}
71, 6eqtri 2759 1 (𝑥𝐴𝐵) = 𝑥𝐴 {⟨𝑥, 𝐵⟩}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3464  {csn 4606  cop 4612   ciun 4972  cmpt 5206   × cxp 5657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543
This theorem is referenced by:  fnasrn  7140  funiun  7142  dfmpo  8106
  Copyright terms: Public domain W3C validator