| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > taylpfval | Structured version Visualization version GIF version | ||
| Description: Define the Taylor polynomial of a function. The constant Tayl is a function of five arguments: 𝑆 is the base set with respect to evaluate the derivatives (generally ℝ or ℂ), 𝐹 is the function we are approximating, at point 𝐵, to order 𝑁. The result is a polynomial function of 𝑥. (Contributed by Mario Carneiro, 31-Dec-2016.) |
| Ref | Expression |
|---|---|
| taylpfval.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| taylpfval.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| taylpfval.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑆) |
| taylpfval.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| taylpfval.b | ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) |
| taylpfval.t | ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) |
| Ref | Expression |
|---|---|
| taylpfval | ⊢ (𝜑 → 𝑇 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | taylpfval.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 2 | taylpfval.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
| 3 | taylpfval.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝑆) | |
| 4 | taylpfval.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 5 | 4 | orcd 873 | . . . 4 ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) |
| 6 | taylpfval.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) | |
| 7 | 1, 2, 3, 4, 6 | taylplem1 26270 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) |
| 8 | taylpfval.t | . . . 4 ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) | |
| 9 | 1, 2, 3, 5, 7, 8 | taylfval 26266 | . . 3 ⊢ (𝜑 → 𝑇 = ∪ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))))) |
| 10 | cnfldbas 21268 | . . . . . . 7 ⊢ ℂ = (Base‘ℂfld) | |
| 11 | cnfld0 21304 | . . . . . . 7 ⊢ 0 = (0g‘ℂfld) | |
| 12 | cnring 21302 | . . . . . . . 8 ⊢ ℂfld ∈ Ring | |
| 13 | ringcmn 20191 | . . . . . . . 8 ⊢ (ℂfld ∈ Ring → ℂfld ∈ CMnd) | |
| 14 | 12, 13 | mp1i 13 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ℂfld ∈ CMnd) |
| 15 | cnfldtps 24665 | . . . . . . . 8 ⊢ ℂfld ∈ TopSp | |
| 16 | 15 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ℂfld ∈ TopSp) |
| 17 | ovex 7420 | . . . . . . . . 9 ⊢ (0[,]𝑁) ∈ V | |
| 18 | 17 | inex1 5272 | . . . . . . . 8 ⊢ ((0[,]𝑁) ∩ ℤ) ∈ V |
| 19 | 18 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((0[,]𝑁) ∩ ℤ) ∈ V) |
| 20 | 1, 2, 3, 5, 7 | taylfvallem1 26264 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)) ∈ ℂ) |
| 21 | 20 | fmpttd 7087 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))):((0[,]𝑁) ∩ ℤ)⟶ℂ) |
| 22 | eqid 2729 | . . . . . . . 8 ⊢ (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))) = (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))) | |
| 23 | 0z 12540 | . . . . . . . . . . 11 ⊢ 0 ∈ ℤ | |
| 24 | 4 | nn0zd 12555 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 25 | fzval2 13471 | . . . . . . . . . . 11 ⊢ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0...𝑁) = ((0[,]𝑁) ∩ ℤ)) | |
| 26 | 23, 24, 25 | sylancr 587 | . . . . . . . . . 10 ⊢ (𝜑 → (0...𝑁) = ((0[,]𝑁) ∩ ℤ)) |
| 27 | 26 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (0...𝑁) = ((0[,]𝑁) ∩ ℤ)) |
| 28 | fzfid 13938 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (0...𝑁) ∈ Fin) | |
| 29 | 27, 28 | eqeltrrd 2829 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((0[,]𝑁) ∩ ℤ) ∈ Fin) |
| 30 | ovexd 7422 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)) ∈ V) | |
| 31 | c0ex 11168 | . . . . . . . . 9 ⊢ 0 ∈ V | |
| 32 | 31 | a1i 11 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 0 ∈ V) |
| 33 | 22, 29, 30, 32 | fsuppmptdm 9327 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))) finSupp 0) |
| 34 | eqid 2729 | . . . . . . 7 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 35 | 34 | cnfldhaus 24672 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) ∈ Haus |
| 36 | 35 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (TopOpen‘ℂfld) ∈ Haus) |
| 37 | 10, 11, 14, 16, 19, 21, 33, 34, 36 | haustsmsid 24028 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))) = {(ℂfld Σg (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))))}) |
| 38 | 29, 20 | gsumfsum 21351 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (ℂfld Σg (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))) = Σ𝑘 ∈ ((0[,]𝑁) ∩ ℤ)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))) |
| 39 | 27 | sumeq1d 15666 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)) = Σ𝑘 ∈ ((0[,]𝑁) ∩ ℤ)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))) |
| 40 | 38, 39 | eqtr4d 2767 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (ℂfld Σg (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))) = Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))) |
| 41 | 40 | sneqd 4601 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → {(ℂfld Σg (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))))} = {Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))}) |
| 42 | 37, 41 | eqtrd 2764 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))) = {Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))}) |
| 43 | 42 | xpeq2d 5668 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))))) = ({𝑥} × {Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))})) |
| 44 | 43 | iuneq2dv 4980 | . . 3 ⊢ (𝜑 → ∪ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))))) = ∪ 𝑥 ∈ ℂ ({𝑥} × {Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))})) |
| 45 | 9, 44 | eqtrd 2764 | . 2 ⊢ (𝜑 → 𝑇 = ∪ 𝑥 ∈ ℂ ({𝑥} × {Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))})) |
| 46 | dfmpt3 6652 | . 2 ⊢ (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))) = ∪ 𝑥 ∈ ℂ ({𝑥} × {Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))}) | |
| 47 | 45, 46 | eqtr4di 2782 | 1 ⊢ (𝜑 → 𝑇 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∩ cin 3913 ⊆ wss 3914 {csn 4589 {cpr 4591 ∪ ciun 4955 ↦ cmpt 5188 × cxp 5636 dom cdm 5638 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 Fincfn 8918 ℂcc 11066 ℝcr 11067 0cc0 11068 · cmul 11073 +∞cpnf 11205 − cmin 11405 / cdiv 11835 ℕ0cn0 12442 ℤcz 12529 [,]cicc 13309 ...cfz 13468 ↑cexp 14026 !cfa 14238 Σcsu 15652 TopOpenctopn 17384 Σg cgsu 17403 CMndccmn 19710 Ringcrg 20142 ℂfldccnfld 21264 TopSpctps 22819 Hauscha 23195 tsums ctsu 24013 D𝑛 cdvn 25765 Tayl ctayl 26260 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-icc 13313 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-fac 14239 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-sum 15653 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-mulr 17234 df-starv 17235 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-rest 17385 df-topn 17386 df-0g 17404 df-gsum 17405 df-topgen 17406 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-cntz 19249 df-cmn 19712 df-abl 19713 df-mgp 20050 df-ur 20091 df-ring 20144 df-cring 20145 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-fbas 21261 df-fg 21262 df-cnfld 21265 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cld 22906 df-ntr 22907 df-cls 22908 df-nei 22985 df-lp 23023 df-perf 23024 df-cnp 23115 df-haus 23202 df-fil 23733 df-fm 23825 df-flim 23826 df-flf 23827 df-tsms 24014 df-xms 24208 df-ms 24209 df-limc 25767 df-dv 25768 df-dvn 25769 df-tayl 26262 |
| This theorem is referenced by: taylpf 26273 taylpval 26274 taylply2 26275 taylply2OLD 26276 dvtaylp 26278 |
| Copyright terms: Public domain | W3C validator |