Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > taylpfval | Structured version Visualization version GIF version |
Description: Define the Taylor polynomial of a function. The constant Tayl is a function of five arguments: 𝑆 is the base set with respect to evaluate the derivatives (generally ℝ or ℂ), 𝐹 is the function we are approximating, at point 𝐵, to order 𝑁. The result is a polynomial function of 𝑥. (Contributed by Mario Carneiro, 31-Dec-2016.) |
Ref | Expression |
---|---|
taylpfval.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
taylpfval.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
taylpfval.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑆) |
taylpfval.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
taylpfval.b | ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) |
taylpfval.t | ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) |
Ref | Expression |
---|---|
taylpfval | ⊢ (𝜑 → 𝑇 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | taylpfval.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
2 | taylpfval.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
3 | taylpfval.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝑆) | |
4 | taylpfval.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
5 | 4 | orcd 872 | . . . 4 ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) |
6 | taylpfval.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) | |
7 | 1, 2, 3, 4, 6 | taylplem1 25110 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) |
8 | taylpfval.t | . . . 4 ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) | |
9 | 1, 2, 3, 5, 7, 8 | taylfval 25106 | . . 3 ⊢ (𝜑 → 𝑇 = ∪ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))))) |
10 | cnfldbas 20221 | . . . . . . 7 ⊢ ℂ = (Base‘ℂfld) | |
11 | cnfld0 20241 | . . . . . . 7 ⊢ 0 = (0g‘ℂfld) | |
12 | cnring 20239 | . . . . . . . 8 ⊢ ℂfld ∈ Ring | |
13 | ringcmn 19453 | . . . . . . . 8 ⊢ (ℂfld ∈ Ring → ℂfld ∈ CMnd) | |
14 | 12, 13 | mp1i 13 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ℂfld ∈ CMnd) |
15 | cnfldtps 23530 | . . . . . . . 8 ⊢ ℂfld ∈ TopSp | |
16 | 15 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ℂfld ∈ TopSp) |
17 | ovex 7203 | . . . . . . . . 9 ⊢ (0[,]𝑁) ∈ V | |
18 | 17 | inex1 5185 | . . . . . . . 8 ⊢ ((0[,]𝑁) ∩ ℤ) ∈ V |
19 | 18 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((0[,]𝑁) ∩ ℤ) ∈ V) |
20 | 1, 2, 3, 5, 7 | taylfvallem1 25104 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)) ∈ ℂ) |
21 | 20 | fmpttd 6889 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))):((0[,]𝑁) ∩ ℤ)⟶ℂ) |
22 | eqid 2738 | . . . . . . . 8 ⊢ (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))) = (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))) | |
23 | 0z 12073 | . . . . . . . . . . 11 ⊢ 0 ∈ ℤ | |
24 | 4 | nn0zd 12166 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
25 | fzval2 12984 | . . . . . . . . . . 11 ⊢ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0...𝑁) = ((0[,]𝑁) ∩ ℤ)) | |
26 | 23, 24, 25 | sylancr 590 | . . . . . . . . . 10 ⊢ (𝜑 → (0...𝑁) = ((0[,]𝑁) ∩ ℤ)) |
27 | 26 | adantr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (0...𝑁) = ((0[,]𝑁) ∩ ℤ)) |
28 | fzfid 13432 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (0...𝑁) ∈ Fin) | |
29 | 27, 28 | eqeltrrd 2834 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((0[,]𝑁) ∩ ℤ) ∈ Fin) |
30 | ovexd 7205 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)) ∈ V) | |
31 | c0ex 10713 | . . . . . . . . 9 ⊢ 0 ∈ V | |
32 | 31 | a1i 11 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 0 ∈ V) |
33 | 22, 29, 30, 32 | fsuppmptdm 8917 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))) finSupp 0) |
34 | eqid 2738 | . . . . . . 7 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
35 | 34 | cnfldhaus 23537 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) ∈ Haus |
36 | 35 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (TopOpen‘ℂfld) ∈ Haus) |
37 | 10, 11, 14, 16, 19, 21, 33, 34, 36 | haustsmsid 22892 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))) = {(ℂfld Σg (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))))}) |
38 | 29, 20 | gsumfsum 20284 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (ℂfld Σg (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))) = Σ𝑘 ∈ ((0[,]𝑁) ∩ ℤ)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))) |
39 | 27 | sumeq1d 15151 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)) = Σ𝑘 ∈ ((0[,]𝑁) ∩ ℤ)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))) |
40 | 38, 39 | eqtr4d 2776 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (ℂfld Σg (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))) = Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))) |
41 | 40 | sneqd 4528 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → {(ℂfld Σg (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))))} = {Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))}) |
42 | 37, 41 | eqtrd 2773 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))) = {Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))}) |
43 | 42 | xpeq2d 5555 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))))) = ({𝑥} × {Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))})) |
44 | 43 | iuneq2dv 4905 | . . 3 ⊢ (𝜑 → ∪ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))))) = ∪ 𝑥 ∈ ℂ ({𝑥} × {Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))})) |
45 | 9, 44 | eqtrd 2773 | . 2 ⊢ (𝜑 → 𝑇 = ∪ 𝑥 ∈ ℂ ({𝑥} × {Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))})) |
46 | dfmpt3 6471 | . 2 ⊢ (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))) = ∪ 𝑥 ∈ ℂ ({𝑥} × {Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))}) | |
47 | 45, 46 | eqtr4di 2791 | 1 ⊢ (𝜑 → 𝑇 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 Vcvv 3398 ∩ cin 3842 ⊆ wss 3843 {csn 4516 {cpr 4518 ∪ ciun 4881 ↦ cmpt 5110 × cxp 5523 dom cdm 5525 ⟶wf 6335 ‘cfv 6339 (class class class)co 7170 Fincfn 8555 ℂcc 10613 ℝcr 10614 0cc0 10615 · cmul 10620 +∞cpnf 10750 − cmin 10948 / cdiv 11375 ℕ0cn0 11976 ℤcz 12062 [,]cicc 12824 ...cfz 12981 ↑cexp 13521 !cfa 13725 Σcsu 15135 TopOpenctopn 16798 Σg cgsu 16817 CMndccmn 19024 Ringcrg 19416 ℂfldccnfld 20217 TopSpctps 21683 Hauscha 22059 tsums ctsu 22877 D𝑛 cdvn 24616 Tayl ctayl 25100 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-inf2 9177 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 ax-pre-sup 10693 ax-addf 10694 ax-mulf 10695 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-iin 4884 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-se 5484 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-supp 7857 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-er 8320 df-map 8439 df-pm 8440 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-fsupp 8907 df-fi 8948 df-sup 8979 df-inf 8980 df-oi 9047 df-card 9441 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-div 11376 df-nn 11717 df-2 11779 df-3 11780 df-4 11781 df-5 11782 df-6 11783 df-7 11784 df-8 11785 df-9 11786 df-n0 11977 df-z 12063 df-dec 12180 df-uz 12325 df-q 12431 df-rp 12473 df-xneg 12590 df-xadd 12591 df-xmul 12592 df-icc 12828 df-fz 12982 df-fzo 13125 df-seq 13461 df-exp 13522 df-fac 13726 df-hash 13783 df-cj 14548 df-re 14549 df-im 14550 df-sqrt 14684 df-abs 14685 df-clim 14935 df-sum 15136 df-struct 16588 df-ndx 16589 df-slot 16590 df-base 16592 df-sets 16593 df-plusg 16681 df-mulr 16682 df-starv 16683 df-tset 16687 df-ple 16688 df-ds 16690 df-unif 16691 df-rest 16799 df-topn 16800 df-0g 16818 df-gsum 16819 df-topgen 16820 df-mgm 17968 df-sgrp 18017 df-mnd 18028 df-grp 18222 df-minusg 18223 df-cntz 18565 df-cmn 19026 df-abl 19027 df-mgp 19359 df-ur 19371 df-ring 19418 df-cring 19419 df-psmet 20209 df-xmet 20210 df-met 20211 df-bl 20212 df-mopn 20213 df-fbas 20214 df-fg 20215 df-cnfld 20218 df-top 21645 df-topon 21662 df-topsp 21684 df-bases 21697 df-cld 21770 df-ntr 21771 df-cls 21772 df-nei 21849 df-lp 21887 df-perf 21888 df-cnp 21979 df-haus 22066 df-fil 22597 df-fm 22689 df-flim 22690 df-flf 22691 df-tsms 22878 df-xms 23073 df-ms 23074 df-limc 24618 df-dv 24619 df-dvn 24620 df-tayl 25102 |
This theorem is referenced by: taylpf 25113 taylpval 25114 taylply2 25115 dvtaylp 25117 |
Copyright terms: Public domain | W3C validator |