| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > taylpfval | Structured version Visualization version GIF version | ||
| Description: Define the Taylor polynomial of a function. The constant Tayl is a function of five arguments: 𝑆 is the base set with respect to evaluate the derivatives (generally ℝ or ℂ), 𝐹 is the function we are approximating, at point 𝐵, to order 𝑁. The result is a polynomial function of 𝑥. (Contributed by Mario Carneiro, 31-Dec-2016.) |
| Ref | Expression |
|---|---|
| taylpfval.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| taylpfval.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| taylpfval.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑆) |
| taylpfval.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| taylpfval.b | ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) |
| taylpfval.t | ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) |
| Ref | Expression |
|---|---|
| taylpfval | ⊢ (𝜑 → 𝑇 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | taylpfval.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 2 | taylpfval.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
| 3 | taylpfval.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝑆) | |
| 4 | taylpfval.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 5 | 4 | orcd 873 | . . . 4 ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) |
| 6 | taylpfval.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) | |
| 7 | 1, 2, 3, 4, 6 | taylplem1 26295 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) |
| 8 | taylpfval.t | . . . 4 ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) | |
| 9 | 1, 2, 3, 5, 7, 8 | taylfval 26291 | . . 3 ⊢ (𝜑 → 𝑇 = ∪ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))))) |
| 10 | cnfldbas 21293 | . . . . . . 7 ⊢ ℂ = (Base‘ℂfld) | |
| 11 | cnfld0 21327 | . . . . . . 7 ⊢ 0 = (0g‘ℂfld) | |
| 12 | cnring 21325 | . . . . . . . 8 ⊢ ℂfld ∈ Ring | |
| 13 | ringcmn 20198 | . . . . . . . 8 ⊢ (ℂfld ∈ Ring → ℂfld ∈ CMnd) | |
| 14 | 12, 13 | mp1i 13 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ℂfld ∈ CMnd) |
| 15 | cnfldtps 24690 | . . . . . . . 8 ⊢ ℂfld ∈ TopSp | |
| 16 | 15 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ℂfld ∈ TopSp) |
| 17 | ovex 7379 | . . . . . . . . 9 ⊢ (0[,]𝑁) ∈ V | |
| 18 | 17 | inex1 5255 | . . . . . . . 8 ⊢ ((0[,]𝑁) ∩ ℤ) ∈ V |
| 19 | 18 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((0[,]𝑁) ∩ ℤ) ∈ V) |
| 20 | 1, 2, 3, 5, 7 | taylfvallem1 26289 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)) ∈ ℂ) |
| 21 | 20 | fmpttd 7048 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))):((0[,]𝑁) ∩ ℤ)⟶ℂ) |
| 22 | eqid 2731 | . . . . . . . 8 ⊢ (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))) = (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))) | |
| 23 | 0z 12476 | . . . . . . . . . . 11 ⊢ 0 ∈ ℤ | |
| 24 | 4 | nn0zd 12491 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 25 | fzval2 13407 | . . . . . . . . . . 11 ⊢ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0...𝑁) = ((0[,]𝑁) ∩ ℤ)) | |
| 26 | 23, 24, 25 | sylancr 587 | . . . . . . . . . 10 ⊢ (𝜑 → (0...𝑁) = ((0[,]𝑁) ∩ ℤ)) |
| 27 | 26 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (0...𝑁) = ((0[,]𝑁) ∩ ℤ)) |
| 28 | fzfid 13877 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (0...𝑁) ∈ Fin) | |
| 29 | 27, 28 | eqeltrrd 2832 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((0[,]𝑁) ∩ ℤ) ∈ Fin) |
| 30 | ovexd 7381 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)) ∈ V) | |
| 31 | c0ex 11103 | . . . . . . . . 9 ⊢ 0 ∈ V | |
| 32 | 31 | a1i 11 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 0 ∈ V) |
| 33 | 22, 29, 30, 32 | fsuppmptdm 9260 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))) finSupp 0) |
| 34 | eqid 2731 | . . . . . . 7 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 35 | 34 | cnfldhaus 24697 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) ∈ Haus |
| 36 | 35 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (TopOpen‘ℂfld) ∈ Haus) |
| 37 | 10, 11, 14, 16, 19, 21, 33, 34, 36 | haustsmsid 24054 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))) = {(ℂfld Σg (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))))}) |
| 38 | 29, 20 | gsumfsum 21369 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (ℂfld Σg (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))) = Σ𝑘 ∈ ((0[,]𝑁) ∩ ℤ)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))) |
| 39 | 27 | sumeq1d 15604 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)) = Σ𝑘 ∈ ((0[,]𝑁) ∩ ℤ)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))) |
| 40 | 38, 39 | eqtr4d 2769 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (ℂfld Σg (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))) = Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))) |
| 41 | 40 | sneqd 4588 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → {(ℂfld Σg (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))))} = {Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))}) |
| 42 | 37, 41 | eqtrd 2766 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))) = {Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))}) |
| 43 | 42 | xpeq2d 5646 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))))) = ({𝑥} × {Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))})) |
| 44 | 43 | iuneq2dv 4966 | . . 3 ⊢ (𝜑 → ∪ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))))) = ∪ 𝑥 ∈ ℂ ({𝑥} × {Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))})) |
| 45 | 9, 44 | eqtrd 2766 | . 2 ⊢ (𝜑 → 𝑇 = ∪ 𝑥 ∈ ℂ ({𝑥} × {Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))})) |
| 46 | dfmpt3 6615 | . 2 ⊢ (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))) = ∪ 𝑥 ∈ ℂ ({𝑥} × {Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))}) | |
| 47 | 45, 46 | eqtr4di 2784 | 1 ⊢ (𝜑 → 𝑇 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∩ cin 3901 ⊆ wss 3902 {csn 4576 {cpr 4578 ∪ ciun 4941 ↦ cmpt 5172 × cxp 5614 dom cdm 5616 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 Fincfn 8869 ℂcc 11001 ℝcr 11002 0cc0 11003 · cmul 11008 +∞cpnf 11140 − cmin 11341 / cdiv 11771 ℕ0cn0 12378 ℤcz 12465 [,]cicc 13245 ...cfz 13404 ↑cexp 13965 !cfa 14177 Σcsu 15590 TopOpenctopn 17322 Σg cgsu 17341 CMndccmn 19690 Ringcrg 20149 ℂfldccnfld 21289 TopSpctps 22845 Hauscha 23221 tsums ctsu 24039 D𝑛 cdvn 25790 Tayl ctayl 26285 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 ax-addf 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-q 12844 df-rp 12888 df-xneg 13008 df-xadd 13009 df-xmul 13010 df-icc 13249 df-fz 13405 df-fzo 13552 df-seq 13906 df-exp 13966 df-fac 14178 df-hash 14235 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-clim 15392 df-sum 15591 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-plusg 17171 df-mulr 17172 df-starv 17173 df-tset 17177 df-ple 17178 df-ds 17180 df-unif 17181 df-rest 17323 df-topn 17324 df-0g 17342 df-gsum 17343 df-topgen 17344 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-grp 18846 df-minusg 18847 df-cntz 19227 df-cmn 19692 df-abl 19693 df-mgp 20057 df-ur 20098 df-ring 20151 df-cring 20152 df-psmet 21281 df-xmet 21282 df-met 21283 df-bl 21284 df-mopn 21285 df-fbas 21286 df-fg 21287 df-cnfld 21290 df-top 22807 df-topon 22824 df-topsp 22846 df-bases 22859 df-cld 22932 df-ntr 22933 df-cls 22934 df-nei 23011 df-lp 23049 df-perf 23050 df-cnp 23141 df-haus 23228 df-fil 23759 df-fm 23851 df-flim 23852 df-flf 23853 df-tsms 24040 df-xms 24233 df-ms 24234 df-limc 25792 df-dv 25793 df-dvn 25794 df-tayl 26287 |
| This theorem is referenced by: taylpf 26298 taylpval 26299 taylply2 26300 taylply2OLD 26301 dvtaylp 26303 |
| Copyright terms: Public domain | W3C validator |