![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > taylpfval | Structured version Visualization version GIF version |
Description: Define the Taylor polynomial of a function. The constant Tayl is a function of five arguments: 𝑆 is the base set with respect to evaluate the derivatives (generally ℝ or ℂ), 𝐹 is the function we are approximating, at point 𝐵, to order 𝑁. The result is a polynomial function of 𝑥. (Contributed by Mario Carneiro, 31-Dec-2016.) |
Ref | Expression |
---|---|
taylpfval.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
taylpfval.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
taylpfval.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑆) |
taylpfval.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
taylpfval.b | ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) |
taylpfval.t | ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) |
Ref | Expression |
---|---|
taylpfval | ⊢ (𝜑 → 𝑇 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | taylpfval.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
2 | taylpfval.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
3 | taylpfval.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝑆) | |
4 | taylpfval.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
5 | 4 | orcd 872 | . . . 4 ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) |
6 | taylpfval.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) | |
7 | 1, 2, 3, 4, 6 | taylplem1 26422 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) |
8 | taylpfval.t | . . . 4 ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) | |
9 | 1, 2, 3, 5, 7, 8 | taylfval 26418 | . . 3 ⊢ (𝜑 → 𝑇 = ∪ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))))) |
10 | cnfldbas 21391 | . . . . . . 7 ⊢ ℂ = (Base‘ℂfld) | |
11 | cnfld0 21428 | . . . . . . 7 ⊢ 0 = (0g‘ℂfld) | |
12 | cnring 21426 | . . . . . . . 8 ⊢ ℂfld ∈ Ring | |
13 | ringcmn 20305 | . . . . . . . 8 ⊢ (ℂfld ∈ Ring → ℂfld ∈ CMnd) | |
14 | 12, 13 | mp1i 13 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ℂfld ∈ CMnd) |
15 | cnfldtps 24819 | . . . . . . . 8 ⊢ ℂfld ∈ TopSp | |
16 | 15 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ℂfld ∈ TopSp) |
17 | ovex 7481 | . . . . . . . . 9 ⊢ (0[,]𝑁) ∈ V | |
18 | 17 | inex1 5335 | . . . . . . . 8 ⊢ ((0[,]𝑁) ∩ ℤ) ∈ V |
19 | 18 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((0[,]𝑁) ∩ ℤ) ∈ V) |
20 | 1, 2, 3, 5, 7 | taylfvallem1 26416 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)) ∈ ℂ) |
21 | 20 | fmpttd 7149 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))):((0[,]𝑁) ∩ ℤ)⟶ℂ) |
22 | eqid 2740 | . . . . . . . 8 ⊢ (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))) = (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))) | |
23 | 0z 12650 | . . . . . . . . . . 11 ⊢ 0 ∈ ℤ | |
24 | 4 | nn0zd 12665 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
25 | fzval2 13570 | . . . . . . . . . . 11 ⊢ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0...𝑁) = ((0[,]𝑁) ∩ ℤ)) | |
26 | 23, 24, 25 | sylancr 586 | . . . . . . . . . 10 ⊢ (𝜑 → (0...𝑁) = ((0[,]𝑁) ∩ ℤ)) |
27 | 26 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (0...𝑁) = ((0[,]𝑁) ∩ ℤ)) |
28 | fzfid 14024 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (0...𝑁) ∈ Fin) | |
29 | 27, 28 | eqeltrrd 2845 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((0[,]𝑁) ∩ ℤ) ∈ Fin) |
30 | ovexd 7483 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)) ∈ V) | |
31 | c0ex 11284 | . . . . . . . . 9 ⊢ 0 ∈ V | |
32 | 31 | a1i 11 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 0 ∈ V) |
33 | 22, 29, 30, 32 | fsuppmptdm 9445 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))) finSupp 0) |
34 | eqid 2740 | . . . . . . 7 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
35 | 34 | cnfldhaus 24826 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) ∈ Haus |
36 | 35 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (TopOpen‘ℂfld) ∈ Haus) |
37 | 10, 11, 14, 16, 19, 21, 33, 34, 36 | haustsmsid 24170 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))) = {(ℂfld Σg (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))))}) |
38 | 29, 20 | gsumfsum 21475 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (ℂfld Σg (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))) = Σ𝑘 ∈ ((0[,]𝑁) ∩ ℤ)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))) |
39 | 27 | sumeq1d 15748 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)) = Σ𝑘 ∈ ((0[,]𝑁) ∩ ℤ)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))) |
40 | 38, 39 | eqtr4d 2783 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (ℂfld Σg (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))) = Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))) |
41 | 40 | sneqd 4660 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → {(ℂfld Σg (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))))} = {Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))}) |
42 | 37, 41 | eqtrd 2780 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))) = {Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))}) |
43 | 42 | xpeq2d 5730 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))))) = ({𝑥} × {Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))})) |
44 | 43 | iuneq2dv 5039 | . . 3 ⊢ (𝜑 → ∪ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))))) = ∪ 𝑥 ∈ ℂ ({𝑥} × {Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))})) |
45 | 9, 44 | eqtrd 2780 | . 2 ⊢ (𝜑 → 𝑇 = ∪ 𝑥 ∈ ℂ ({𝑥} × {Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))})) |
46 | dfmpt3 6714 | . 2 ⊢ (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))) = ∪ 𝑥 ∈ ℂ ({𝑥} × {Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))}) | |
47 | 45, 46 | eqtr4di 2798 | 1 ⊢ (𝜑 → 𝑇 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 {csn 4648 {cpr 4650 ∪ ciun 5015 ↦ cmpt 5249 × cxp 5698 dom cdm 5700 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 Fincfn 9003 ℂcc 11182 ℝcr 11183 0cc0 11184 · cmul 11189 +∞cpnf 11321 − cmin 11520 / cdiv 11947 ℕ0cn0 12553 ℤcz 12639 [,]cicc 13410 ...cfz 13567 ↑cexp 14112 !cfa 14322 Σcsu 15734 TopOpenctopn 17481 Σg cgsu 17500 CMndccmn 19822 Ringcrg 20260 ℂfldccnfld 21387 TopSpctps 22959 Hauscha 23337 tsums ctsu 24155 D𝑛 cdvn 25919 Tayl ctayl 26412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-icc 13414 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-fac 14323 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-sum 15735 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-mulr 17325 df-starv 17326 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-cntz 19357 df-cmn 19824 df-abl 19825 df-mgp 20162 df-ur 20209 df-ring 20262 df-cring 20263 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-fbas 21384 df-fg 21385 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-lp 23165 df-perf 23166 df-cnp 23257 df-haus 23344 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 df-tsms 24156 df-xms 24351 df-ms 24352 df-limc 25921 df-dv 25922 df-dvn 25923 df-tayl 26414 |
This theorem is referenced by: taylpf 26425 taylpval 26426 taylply2 26427 taylply2OLD 26428 dvtaylp 26430 |
Copyright terms: Public domain | W3C validator |