MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylpfval Structured version   Visualization version   GIF version

Theorem taylpfval 25859
Description: Define the Taylor polynomial of a function. The constant Tayl is a function of five arguments: 𝑆 is the base set with respect to evaluate the derivatives (generally or ), 𝐹 is the function we are approximating, at point 𝐵, to order 𝑁. The result is a polynomial function of 𝑥. (Contributed by Mario Carneiro, 31-Dec-2016.)
Hypotheses
Ref Expression
taylpfval.s (𝜑𝑆 ∈ {ℝ, ℂ})
taylpfval.f (𝜑𝐹:𝐴⟶ℂ)
taylpfval.a (𝜑𝐴𝑆)
taylpfval.n (𝜑𝑁 ∈ ℕ0)
taylpfval.b (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
taylpfval.t 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
Assertion
Ref Expression
taylpfval (𝜑𝑇 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))
Distinct variable groups:   𝑥,𝑘,𝐵   𝑘,𝐹,𝑥   𝑘,𝑁,𝑥   𝜑,𝑘,𝑥   𝑆,𝑘,𝑥   𝑥,𝑇
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝑇(𝑘)

Proof of Theorem taylpfval
StepHypRef Expression
1 taylpfval.s . . . 4 (𝜑𝑆 ∈ {ℝ, ℂ})
2 taylpfval.f . . . 4 (𝜑𝐹:𝐴⟶ℂ)
3 taylpfval.a . . . 4 (𝜑𝐴𝑆)
4 taylpfval.n . . . . 5 (𝜑𝑁 ∈ ℕ0)
54orcd 872 . . . 4 (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
6 taylpfval.b . . . . 5 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
71, 2, 3, 4, 6taylplem1 25857 . . . 4 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
8 taylpfval.t . . . 4 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
91, 2, 3, 5, 7, 8taylfval 25853 . . 3 (𝜑𝑇 = 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
10 cnfldbas 20933 . . . . . . 7 ℂ = (Base‘ℂfld)
11 cnfld0 20954 . . . . . . 7 0 = (0g‘ℂfld)
12 cnring 20952 . . . . . . . 8 fld ∈ Ring
13 ringcmn 20089 . . . . . . . 8 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
1412, 13mp1i 13 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → ℂfld ∈ CMnd)
15 cnfldtps 24276 . . . . . . . 8 fld ∈ TopSp
1615a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → ℂfld ∈ TopSp)
17 ovex 7437 . . . . . . . . 9 (0[,]𝑁) ∈ V
1817inex1 5316 . . . . . . . 8 ((0[,]𝑁) ∩ ℤ) ∈ V
1918a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → ((0[,]𝑁) ∩ ℤ) ∈ V)
201, 2, 3, 5, 7taylfvallem1 25851 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)) ∈ ℂ)
2120fmpttd 7110 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))):((0[,]𝑁) ∩ ℤ)⟶ℂ)
22 eqid 2733 . . . . . . . 8 (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))) = (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))
23 0z 12565 . . . . . . . . . . 11 0 ∈ ℤ
244nn0zd 12580 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
25 fzval2 13483 . . . . . . . . . . 11 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0...𝑁) = ((0[,]𝑁) ∩ ℤ))
2623, 24, 25sylancr 588 . . . . . . . . . 10 (𝜑 → (0...𝑁) = ((0[,]𝑁) ∩ ℤ))
2726adantr 482 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → (0...𝑁) = ((0[,]𝑁) ∩ ℤ))
28 fzfid 13934 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → (0...𝑁) ∈ Fin)
2927, 28eqeltrrd 2835 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → ((0[,]𝑁) ∩ ℤ) ∈ Fin)
30 ovexd 7439 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)) ∈ V)
31 c0ex 11204 . . . . . . . . 9 0 ∈ V
3231a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → 0 ∈ V)
3322, 29, 30, 32fsuppmptdm 9370 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))) finSupp 0)
34 eqid 2733 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
3534cnfldhaus 24283 . . . . . . . 8 (TopOpen‘ℂfld) ∈ Haus
3635a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → (TopOpen‘ℂfld) ∈ Haus)
3710, 11, 14, 16, 19, 21, 33, 34, 36haustsmsid 23627 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))) = {(ℂfld Σg (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))})
3829, 20gsumfsum 20997 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → (ℂfld Σg (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))) = Σ𝑘 ∈ ((0[,]𝑁) ∩ ℤ)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))
3927sumeq1d 15643 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)) = Σ𝑘 ∈ ((0[,]𝑁) ∩ ℤ)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))
4038, 39eqtr4d 2776 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → (ℂfld Σg (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))) = Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))
4140sneqd 4639 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → {(ℂfld Σg (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))} = {Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))})
4237, 41eqtrd 2773 . . . . 5 ((𝜑𝑥 ∈ ℂ) → (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))) = {Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))})
4342xpeq2d 5705 . . . 4 ((𝜑𝑥 ∈ ℂ) → ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) = ({𝑥} × {Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))}))
4443iuneq2dv 5020 . . 3 (𝜑 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) = 𝑥 ∈ ℂ ({𝑥} × {Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))}))
459, 44eqtrd 2773 . 2 (𝜑𝑇 = 𝑥 ∈ ℂ ({𝑥} × {Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))}))
46 dfmpt3 6681 . 2 (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))) = 𝑥 ∈ ℂ ({𝑥} × {Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))})
4745, 46eqtr4di 2791 1 (𝜑𝑇 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  Vcvv 3475  cin 3946  wss 3947  {csn 4627  {cpr 4629   ciun 4996  cmpt 5230   × cxp 5673  dom cdm 5675  wf 6536  cfv 6540  (class class class)co 7404  Fincfn 8935  cc 11104  cr 11105  0cc0 11106   · cmul 11111  +∞cpnf 11241  cmin 11440   / cdiv 11867  0cn0 12468  cz 12554  [,]cicc 13323  ...cfz 13480  cexp 14023  !cfa 14229  Σcsu 15628  TopOpenctopn 17363   Σg cgsu 17382  CMndccmn 19641  Ringcrg 20047  fldccnfld 20929  TopSpctps 22416  Hauscha 22794   tsums ctsu 23612   D𝑛 cdvn 25363   Tayl ctayl 25847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-1st 7970  df-2nd 7971  df-supp 8142  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-icc 13327  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-fac 14230  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-sum 15629  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-plusg 17206  df-mulr 17207  df-starv 17208  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-rest 17364  df-topn 17365  df-0g 17383  df-gsum 17384  df-topgen 17385  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-minusg 18819  df-cntz 19175  df-cmn 19643  df-abl 19644  df-mgp 19980  df-ur 19997  df-ring 20049  df-cring 20050  df-psmet 20921  df-xmet 20922  df-met 20923  df-bl 20924  df-mopn 20925  df-fbas 20926  df-fg 20927  df-cnfld 20930  df-top 22378  df-topon 22395  df-topsp 22417  df-bases 22431  df-cld 22505  df-ntr 22506  df-cls 22507  df-nei 22584  df-lp 22622  df-perf 22623  df-cnp 22714  df-haus 22801  df-fil 23332  df-fm 23424  df-flim 23425  df-flf 23426  df-tsms 23613  df-xms 23808  df-ms 23809  df-limc 25365  df-dv 25366  df-dvn 25367  df-tayl 25849
This theorem is referenced by:  taylpf  25860  taylpval  25861  taylply2  25862  dvtaylp  25864
  Copyright terms: Public domain W3C validator