| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfsuccl3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the class of all successors. (Contributed by Peter Mazsa, 30-Jan-2026.) |
| Ref | Expression |
|---|---|
| dfsuccl3 | ⊢ Suc = {𝑛 ∣ ∃!𝑚 suc 𝑚 = 𝑛} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsuccl2 38493 | . 2 ⊢ Suc = {𝑛 ∣ ∃𝑚 suc 𝑚 = 𝑛} | |
| 2 | exeupre2 38495 | . . 3 ⊢ (∃𝑚 suc 𝑚 = 𝑛 ↔ ∃!𝑚 suc 𝑚 = 𝑛) | |
| 3 | 2 | abbii 2798 | . 2 ⊢ {𝑛 ∣ ∃𝑚 suc 𝑚 = 𝑛} = {𝑛 ∣ ∃!𝑚 suc 𝑚 = 𝑛} |
| 4 | 1, 3 | eqtri 2754 | 1 ⊢ Suc = {𝑛 ∣ ∃!𝑚 suc 𝑚 = 𝑛} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∃wex 1780 ∃!weu 2563 {cab 2709 suc csuc 6308 Suc csuccl 38228 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 ax-reg 9478 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-eprel 5514 df-fr 5567 df-cnv 5622 df-dm 5624 df-rn 5625 df-suc 6312 df-sucmap 38485 df-succl 38492 |
| This theorem is referenced by: dfsuccl4 38497 |
| Copyright terms: Public domain | W3C validator |