Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfsuccl4 Structured version   Visualization version   GIF version

Theorem dfsuccl4 38497
Description: Alternate definition that incorporates the most desirable properties of the successor class. (Contributed by Peter Mazsa, 30-Jan-2026.)
Assertion
Ref Expression
dfsuccl4 Suc = {𝑛 ∣ ∃!𝑚𝑛 (𝑚𝑛 ∧ suc 𝑚 = 𝑛)}
Distinct variable group:   𝑚,𝑛

Proof of Theorem dfsuccl4
StepHypRef Expression
1 dfsuccl3 38496 . 2 Suc = {𝑛 ∣ ∃!𝑚 suc 𝑚 = 𝑛}
2 sucidg 6389 . . . . . . . . . 10 (𝑚 ∈ V → 𝑚 ∈ suc 𝑚)
32elv 3441 . . . . . . . . 9 𝑚 ∈ suc 𝑚
4 eleq2 2820 . . . . . . . . 9 (suc 𝑚 = 𝑛 → (𝑚 ∈ suc 𝑚𝑚𝑛))
53, 4mpbii 233 . . . . . . . 8 (suc 𝑚 = 𝑛𝑚𝑛)
6 sssucid 6388 . . . . . . . . 9 𝑚 ⊆ suc 𝑚
7 sseq2 3956 . . . . . . . . 9 (suc 𝑚 = 𝑛 → (𝑚 ⊆ suc 𝑚𝑚𝑛))
86, 7mpbii 233 . . . . . . . 8 (suc 𝑚 = 𝑛𝑚𝑛)
95, 8jca 511 . . . . . . 7 (suc 𝑚 = 𝑛 → (𝑚𝑛𝑚𝑛))
109pm4.71ri 560 . . . . . 6 (suc 𝑚 = 𝑛 ↔ ((𝑚𝑛𝑚𝑛) ∧ suc 𝑚 = 𝑛))
11 df-3an 1088 . . . . . 6 ((𝑚𝑛𝑚𝑛 ∧ suc 𝑚 = 𝑛) ↔ ((𝑚𝑛𝑚𝑛) ∧ suc 𝑚 = 𝑛))
12 3anass 1094 . . . . . 6 ((𝑚𝑛𝑚𝑛 ∧ suc 𝑚 = 𝑛) ↔ (𝑚𝑛 ∧ (𝑚𝑛 ∧ suc 𝑚 = 𝑛)))
1310, 11, 123bitr2i 299 . . . . 5 (suc 𝑚 = 𝑛 ↔ (𝑚𝑛 ∧ (𝑚𝑛 ∧ suc 𝑚 = 𝑛)))
1413eubii 2580 . . . 4 (∃!𝑚 suc 𝑚 = 𝑛 ↔ ∃!𝑚(𝑚𝑛 ∧ (𝑚𝑛 ∧ suc 𝑚 = 𝑛)))
15 df-reu 3347 . . . 4 (∃!𝑚𝑛 (𝑚𝑛 ∧ suc 𝑚 = 𝑛) ↔ ∃!𝑚(𝑚𝑛 ∧ (𝑚𝑛 ∧ suc 𝑚 = 𝑛)))
1614, 15bitr4i 278 . . 3 (∃!𝑚 suc 𝑚 = 𝑛 ↔ ∃!𝑚𝑛 (𝑚𝑛 ∧ suc 𝑚 = 𝑛))
1716abbii 2798 . 2 {𝑛 ∣ ∃!𝑚 suc 𝑚 = 𝑛} = {𝑛 ∣ ∃!𝑚𝑛 (𝑚𝑛 ∧ suc 𝑚 = 𝑛)}
181, 17eqtri 2754 1 Suc = {𝑛 ∣ ∃!𝑚𝑛 (𝑚𝑛 ∧ suc 𝑚 = 𝑛)}
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1541  wcel 2111  ∃!weu 2563  {cab 2709  ∃!wreu 3344  Vcvv 3436  wss 3897  suc csuc 6308   Suc csuccl 38228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668  ax-reg 9478
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-eprel 5514  df-fr 5567  df-cnv 5622  df-dm 5624  df-rn 5625  df-suc 6312  df-sucmap 38485  df-succl 38492
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator