Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nzprmdif Structured version   Visualization version   GIF version

Theorem nzprmdif 40096
Description: Subtract one prime's multiples from an unequal prime's. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Hypotheses
Ref Expression
nzprmdif.m (𝜑𝑀 ∈ ℙ)
nzprmdif.n (𝜑𝑁 ∈ ℙ)
nzprmdif.ne (𝜑𝑀𝑁)
Assertion
Ref Expression
nzprmdif (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 · 𝑁)})))

Proof of Theorem nzprmdif
StepHypRef Expression
1 difin 4119 . . 3 (( ∥ “ {𝑀}) ∖ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁}))) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁}))
2 nzprmdif.m . . . . . 6 (𝜑𝑀 ∈ ℙ)
3 prmz 15873 . . . . . 6 (𝑀 ∈ ℙ → 𝑀 ∈ ℤ)
42, 3syl 17 . . . . 5 (𝜑𝑀 ∈ ℤ)
5 nzprmdif.n . . . . . 6 (𝜑𝑁 ∈ ℙ)
6 prmz 15873 . . . . . 6 (𝑁 ∈ ℙ → 𝑁 ∈ ℤ)
75, 6syl 17 . . . . 5 (𝜑𝑁 ∈ ℤ)
84, 7nzin 40095 . . . 4 (𝜑 → (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) = ( ∥ “ {(𝑀 lcm 𝑁)}))
98difeq2d 3983 . . 3 (𝜑 → (( ∥ “ {𝑀}) ∖ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁}))) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 lcm 𝑁)})))
101, 9syl5eqr 2822 . 2 (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 lcm 𝑁)})))
11 lcmgcd 15805 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁)))
124, 7, 11syl2anc 576 . . . . . 6 (𝜑 → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁)))
13 nzprmdif.ne . . . . . . . . 9 (𝜑𝑀𝑁)
14 prmrp 15910 . . . . . . . . . 10 ((𝑀 ∈ ℙ ∧ 𝑁 ∈ ℙ) → ((𝑀 gcd 𝑁) = 1 ↔ 𝑀𝑁))
152, 5, 14syl2anc 576 . . . . . . . . 9 (𝜑 → ((𝑀 gcd 𝑁) = 1 ↔ 𝑀𝑁))
1613, 15mpbird 249 . . . . . . . 8 (𝜑 → (𝑀 gcd 𝑁) = 1)
1716oveq2d 6990 . . . . . . 7 (𝜑 → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = ((𝑀 lcm 𝑁) · 1))
18 lcmcl 15799 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ0)
194, 7, 18syl2anc 576 . . . . . . . . 9 (𝜑 → (𝑀 lcm 𝑁) ∈ ℕ0)
2019nn0cnd 11767 . . . . . . . 8 (𝜑 → (𝑀 lcm 𝑁) ∈ ℂ)
2120mulid1d 10455 . . . . . . 7 (𝜑 → ((𝑀 lcm 𝑁) · 1) = (𝑀 lcm 𝑁))
2217, 21eqtrd 2808 . . . . . 6 (𝜑 → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝑀 lcm 𝑁))
234zred 11898 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
247zred 11898 . . . . . . . 8 (𝜑𝑁 ∈ ℝ)
2523, 24remulcld 10468 . . . . . . 7 (𝜑 → (𝑀 · 𝑁) ∈ ℝ)
26 prmnn 15872 . . . . . . . . . . 11 (𝑀 ∈ ℙ → 𝑀 ∈ ℕ)
272, 26syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
2827nnnn0d 11765 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ0)
2928nn0ge0d 11768 . . . . . . . 8 (𝜑 → 0 ≤ 𝑀)
30 prmnn 15872 . . . . . . . . . . 11 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ)
315, 30syl 17 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
3231nnnn0d 11765 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
3332nn0ge0d 11768 . . . . . . . 8 (𝜑 → 0 ≤ 𝑁)
3423, 24, 29, 33mulge0d 11016 . . . . . . 7 (𝜑 → 0 ≤ (𝑀 · 𝑁))
3525, 34absidd 14641 . . . . . 6 (𝜑 → (abs‘(𝑀 · 𝑁)) = (𝑀 · 𝑁))
3612, 22, 353eqtr3d 2816 . . . . 5 (𝜑 → (𝑀 lcm 𝑁) = (𝑀 · 𝑁))
3736sneqd 4447 . . . 4 (𝜑 → {(𝑀 lcm 𝑁)} = {(𝑀 · 𝑁)})
3837imaeq2d 5767 . . 3 (𝜑 → ( ∥ “ {(𝑀 lcm 𝑁)}) = ( ∥ “ {(𝑀 · 𝑁)}))
3938difeq2d 3983 . 2 (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 lcm 𝑁)})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 · 𝑁)})))
4010, 39eqtrd 2808 1 (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 · 𝑁)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1507  wcel 2050  wne 2961  cdif 3820  cin 3822  {csn 4435  cima 5406  cfv 6185  (class class class)co 6974  1c1 10334   · cmul 10338  cn 11437  0cn0 11705  cz 11791  abscabs 14452  cdvds 15465   gcd cgcd 15701   lcm clcm 15786  cprime 15869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410  ax-pre-sup 10411
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-2nd 7500  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-1o 7903  df-2o 7904  df-er 8087  df-en 8305  df-dom 8306  df-sdom 8307  df-fin 8308  df-sup 8699  df-inf 8700  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-div 11097  df-nn 11438  df-2 11501  df-3 11502  df-n0 11706  df-z 11792  df-uz 12057  df-rp 12203  df-fl 12975  df-mod 13051  df-seq 13183  df-exp 13243  df-cj 14317  df-re 14318  df-im 14319  df-sqrt 14453  df-abs 14454  df-dvds 15466  df-gcd 15702  df-lcm 15788  df-prm 15870
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator