Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nzprmdif Structured version   Visualization version   GIF version

Theorem nzprmdif 44315
Description: Subtract one prime's multiples from an unequal prime's. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Hypotheses
Ref Expression
nzprmdif.m (𝜑𝑀 ∈ ℙ)
nzprmdif.n (𝜑𝑁 ∈ ℙ)
nzprmdif.ne (𝜑𝑀𝑁)
Assertion
Ref Expression
nzprmdif (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 · 𝑁)})))

Proof of Theorem nzprmdif
StepHypRef Expression
1 difin 4278 . . 3 (( ∥ “ {𝑀}) ∖ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁}))) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁}))
2 nzprmdif.m . . . . . 6 (𝜑𝑀 ∈ ℙ)
3 prmz 16709 . . . . . 6 (𝑀 ∈ ℙ → 𝑀 ∈ ℤ)
42, 3syl 17 . . . . 5 (𝜑𝑀 ∈ ℤ)
5 nzprmdif.n . . . . . 6 (𝜑𝑁 ∈ ℙ)
6 prmz 16709 . . . . . 6 (𝑁 ∈ ℙ → 𝑁 ∈ ℤ)
75, 6syl 17 . . . . 5 (𝜑𝑁 ∈ ℤ)
84, 7nzin 44314 . . . 4 (𝜑 → (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) = ( ∥ “ {(𝑀 lcm 𝑁)}))
98difeq2d 4136 . . 3 (𝜑 → (( ∥ “ {𝑀}) ∖ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁}))) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 lcm 𝑁)})))
101, 9eqtr3id 2789 . 2 (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 lcm 𝑁)})))
11 lcmgcd 16641 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁)))
124, 7, 11syl2anc 584 . . . . . 6 (𝜑 → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁)))
13 nzprmdif.ne . . . . . . . . 9 (𝜑𝑀𝑁)
14 prmrp 16746 . . . . . . . . . 10 ((𝑀 ∈ ℙ ∧ 𝑁 ∈ ℙ) → ((𝑀 gcd 𝑁) = 1 ↔ 𝑀𝑁))
152, 5, 14syl2anc 584 . . . . . . . . 9 (𝜑 → ((𝑀 gcd 𝑁) = 1 ↔ 𝑀𝑁))
1613, 15mpbird 257 . . . . . . . 8 (𝜑 → (𝑀 gcd 𝑁) = 1)
1716oveq2d 7447 . . . . . . 7 (𝜑 → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = ((𝑀 lcm 𝑁) · 1))
18 lcmcl 16635 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ0)
194, 7, 18syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑀 lcm 𝑁) ∈ ℕ0)
2019nn0cnd 12587 . . . . . . . 8 (𝜑 → (𝑀 lcm 𝑁) ∈ ℂ)
2120mulridd 11276 . . . . . . 7 (𝜑 → ((𝑀 lcm 𝑁) · 1) = (𝑀 lcm 𝑁))
2217, 21eqtrd 2775 . . . . . 6 (𝜑 → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝑀 lcm 𝑁))
234zred 12720 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
247zred 12720 . . . . . . . 8 (𝜑𝑁 ∈ ℝ)
2523, 24remulcld 11289 . . . . . . 7 (𝜑 → (𝑀 · 𝑁) ∈ ℝ)
26 prmnn 16708 . . . . . . . . . . 11 (𝑀 ∈ ℙ → 𝑀 ∈ ℕ)
272, 26syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
2827nnnn0d 12585 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ0)
2928nn0ge0d 12588 . . . . . . . 8 (𝜑 → 0 ≤ 𝑀)
30 prmnn 16708 . . . . . . . . . . 11 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ)
315, 30syl 17 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
3231nnnn0d 12585 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
3332nn0ge0d 12588 . . . . . . . 8 (𝜑 → 0 ≤ 𝑁)
3423, 24, 29, 33mulge0d 11838 . . . . . . 7 (𝜑 → 0 ≤ (𝑀 · 𝑁))
3525, 34absidd 15458 . . . . . 6 (𝜑 → (abs‘(𝑀 · 𝑁)) = (𝑀 · 𝑁))
3612, 22, 353eqtr3d 2783 . . . . 5 (𝜑 → (𝑀 lcm 𝑁) = (𝑀 · 𝑁))
3736sneqd 4643 . . . 4 (𝜑 → {(𝑀 lcm 𝑁)} = {(𝑀 · 𝑁)})
3837imaeq2d 6080 . . 3 (𝜑 → ( ∥ “ {(𝑀 lcm 𝑁)}) = ( ∥ “ {(𝑀 · 𝑁)}))
3938difeq2d 4136 . 2 (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 lcm 𝑁)})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 · 𝑁)})))
4010, 39eqtrd 2775 1 (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 · 𝑁)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2106  wne 2938  cdif 3960  cin 3962  {csn 4631  cima 5692  cfv 6563  (class class class)co 7431  1c1 11154   · cmul 11158  cn 12264  0cn0 12524  cz 12611  abscabs 15270  cdvds 16287   gcd cgcd 16528   lcm clcm 16622  cprime 16705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-gcd 16529  df-lcm 16624  df-prm 16706
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator