| Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nzprmdif | Structured version Visualization version GIF version | ||
| Description: Subtract one prime's multiples from an unequal prime's. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
| Ref | Expression |
|---|---|
| nzprmdif.m | ⊢ (𝜑 → 𝑀 ∈ ℙ) |
| nzprmdif.n | ⊢ (𝜑 → 𝑁 ∈ ℙ) |
| nzprmdif.ne | ⊢ (𝜑 → 𝑀 ≠ 𝑁) |
| Ref | Expression |
|---|---|
| nzprmdif | ⊢ (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 · 𝑁)}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difin 4238 | . . 3 ⊢ (( ∥ “ {𝑀}) ∖ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁}))) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁})) | |
| 2 | nzprmdif.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℙ) | |
| 3 | prmz 16652 | . . . . . 6 ⊢ (𝑀 ∈ ℙ → 𝑀 ∈ ℤ) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 5 | nzprmdif.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℙ) | |
| 6 | prmz 16652 | . . . . . 6 ⊢ (𝑁 ∈ ℙ → 𝑁 ∈ ℤ) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 8 | 4, 7 | nzin 44314 | . . . 4 ⊢ (𝜑 → (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) = ( ∥ “ {(𝑀 lcm 𝑁)})) |
| 9 | 8 | difeq2d 4092 | . . 3 ⊢ (𝜑 → (( ∥ “ {𝑀}) ∖ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁}))) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 lcm 𝑁)}))) |
| 10 | 1, 9 | eqtr3id 2779 | . 2 ⊢ (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 lcm 𝑁)}))) |
| 11 | lcmgcd 16584 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁))) | |
| 12 | 4, 7, 11 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁))) |
| 13 | nzprmdif.ne | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ≠ 𝑁) | |
| 14 | prmrp 16689 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℙ ∧ 𝑁 ∈ ℙ) → ((𝑀 gcd 𝑁) = 1 ↔ 𝑀 ≠ 𝑁)) | |
| 15 | 2, 5, 14 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → ((𝑀 gcd 𝑁) = 1 ↔ 𝑀 ≠ 𝑁)) |
| 16 | 13, 15 | mpbird 257 | . . . . . . . 8 ⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) |
| 17 | 16 | oveq2d 7406 | . . . . . . 7 ⊢ (𝜑 → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = ((𝑀 lcm 𝑁) · 1)) |
| 18 | lcmcl 16578 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ0) | |
| 19 | 4, 7, 18 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → (𝑀 lcm 𝑁) ∈ ℕ0) |
| 20 | 19 | nn0cnd 12512 | . . . . . . . 8 ⊢ (𝜑 → (𝑀 lcm 𝑁) ∈ ℂ) |
| 21 | 20 | mulridd 11198 | . . . . . . 7 ⊢ (𝜑 → ((𝑀 lcm 𝑁) · 1) = (𝑀 lcm 𝑁)) |
| 22 | 17, 21 | eqtrd 2765 | . . . . . 6 ⊢ (𝜑 → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝑀 lcm 𝑁)) |
| 23 | 4 | zred 12645 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 24 | 7 | zred 12645 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 25 | 23, 24 | remulcld 11211 | . . . . . . 7 ⊢ (𝜑 → (𝑀 · 𝑁) ∈ ℝ) |
| 26 | prmnn 16651 | . . . . . . . . . . 11 ⊢ (𝑀 ∈ ℙ → 𝑀 ∈ ℕ) | |
| 27 | 2, 26 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 28 | 27 | nnnn0d 12510 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
| 29 | 28 | nn0ge0d 12513 | . . . . . . . 8 ⊢ (𝜑 → 0 ≤ 𝑀) |
| 30 | prmnn 16651 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℙ → 𝑁 ∈ ℕ) | |
| 31 | 5, 30 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 32 | 31 | nnnn0d 12510 | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 33 | 32 | nn0ge0d 12513 | . . . . . . . 8 ⊢ (𝜑 → 0 ≤ 𝑁) |
| 34 | 23, 24, 29, 33 | mulge0d 11762 | . . . . . . 7 ⊢ (𝜑 → 0 ≤ (𝑀 · 𝑁)) |
| 35 | 25, 34 | absidd 15396 | . . . . . 6 ⊢ (𝜑 → (abs‘(𝑀 · 𝑁)) = (𝑀 · 𝑁)) |
| 36 | 12, 22, 35 | 3eqtr3d 2773 | . . . . 5 ⊢ (𝜑 → (𝑀 lcm 𝑁) = (𝑀 · 𝑁)) |
| 37 | 36 | sneqd 4604 | . . . 4 ⊢ (𝜑 → {(𝑀 lcm 𝑁)} = {(𝑀 · 𝑁)}) |
| 38 | 37 | imaeq2d 6034 | . . 3 ⊢ (𝜑 → ( ∥ “ {(𝑀 lcm 𝑁)}) = ( ∥ “ {(𝑀 · 𝑁)})) |
| 39 | 38 | difeq2d 4092 | . 2 ⊢ (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 lcm 𝑁)})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 · 𝑁)}))) |
| 40 | 10, 39 | eqtrd 2765 | 1 ⊢ (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 · 𝑁)}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∖ cdif 3914 ∩ cin 3916 {csn 4592 “ cima 5644 ‘cfv 6514 (class class class)co 7390 1c1 11076 · cmul 11080 ℕcn 12193 ℕ0cn0 12449 ℤcz 12536 abscabs 15207 ∥ cdvds 16229 gcd cgcd 16471 lcm clcm 16565 ℙcprime 16648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-dvds 16230 df-gcd 16472 df-lcm 16567 df-prm 16649 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |