Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nzprmdif Structured version   Visualization version   GIF version

Theorem nzprmdif 44338
Description: Subtract one prime's multiples from an unequal prime's. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Hypotheses
Ref Expression
nzprmdif.m (𝜑𝑀 ∈ ℙ)
nzprmdif.n (𝜑𝑁 ∈ ℙ)
nzprmdif.ne (𝜑𝑀𝑁)
Assertion
Ref Expression
nzprmdif (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 · 𝑁)})))

Proof of Theorem nzprmdif
StepHypRef Expression
1 difin 4272 . . 3 (( ∥ “ {𝑀}) ∖ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁}))) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁}))
2 nzprmdif.m . . . . . 6 (𝜑𝑀 ∈ ℙ)
3 prmz 16712 . . . . . 6 (𝑀 ∈ ℙ → 𝑀 ∈ ℤ)
42, 3syl 17 . . . . 5 (𝜑𝑀 ∈ ℤ)
5 nzprmdif.n . . . . . 6 (𝜑𝑁 ∈ ℙ)
6 prmz 16712 . . . . . 6 (𝑁 ∈ ℙ → 𝑁 ∈ ℤ)
75, 6syl 17 . . . . 5 (𝜑𝑁 ∈ ℤ)
84, 7nzin 44337 . . . 4 (𝜑 → (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) = ( ∥ “ {(𝑀 lcm 𝑁)}))
98difeq2d 4126 . . 3 (𝜑 → (( ∥ “ {𝑀}) ∖ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁}))) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 lcm 𝑁)})))
101, 9eqtr3id 2791 . 2 (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 lcm 𝑁)})))
11 lcmgcd 16644 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁)))
124, 7, 11syl2anc 584 . . . . . 6 (𝜑 → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁)))
13 nzprmdif.ne . . . . . . . . 9 (𝜑𝑀𝑁)
14 prmrp 16749 . . . . . . . . . 10 ((𝑀 ∈ ℙ ∧ 𝑁 ∈ ℙ) → ((𝑀 gcd 𝑁) = 1 ↔ 𝑀𝑁))
152, 5, 14syl2anc 584 . . . . . . . . 9 (𝜑 → ((𝑀 gcd 𝑁) = 1 ↔ 𝑀𝑁))
1613, 15mpbird 257 . . . . . . . 8 (𝜑 → (𝑀 gcd 𝑁) = 1)
1716oveq2d 7447 . . . . . . 7 (𝜑 → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = ((𝑀 lcm 𝑁) · 1))
18 lcmcl 16638 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ0)
194, 7, 18syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑀 lcm 𝑁) ∈ ℕ0)
2019nn0cnd 12589 . . . . . . . 8 (𝜑 → (𝑀 lcm 𝑁) ∈ ℂ)
2120mulridd 11278 . . . . . . 7 (𝜑 → ((𝑀 lcm 𝑁) · 1) = (𝑀 lcm 𝑁))
2217, 21eqtrd 2777 . . . . . 6 (𝜑 → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝑀 lcm 𝑁))
234zred 12722 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
247zred 12722 . . . . . . . 8 (𝜑𝑁 ∈ ℝ)
2523, 24remulcld 11291 . . . . . . 7 (𝜑 → (𝑀 · 𝑁) ∈ ℝ)
26 prmnn 16711 . . . . . . . . . . 11 (𝑀 ∈ ℙ → 𝑀 ∈ ℕ)
272, 26syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
2827nnnn0d 12587 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ0)
2928nn0ge0d 12590 . . . . . . . 8 (𝜑 → 0 ≤ 𝑀)
30 prmnn 16711 . . . . . . . . . . 11 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ)
315, 30syl 17 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
3231nnnn0d 12587 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
3332nn0ge0d 12590 . . . . . . . 8 (𝜑 → 0 ≤ 𝑁)
3423, 24, 29, 33mulge0d 11840 . . . . . . 7 (𝜑 → 0 ≤ (𝑀 · 𝑁))
3525, 34absidd 15461 . . . . . 6 (𝜑 → (abs‘(𝑀 · 𝑁)) = (𝑀 · 𝑁))
3612, 22, 353eqtr3d 2785 . . . . 5 (𝜑 → (𝑀 lcm 𝑁) = (𝑀 · 𝑁))
3736sneqd 4638 . . . 4 (𝜑 → {(𝑀 lcm 𝑁)} = {(𝑀 · 𝑁)})
3837imaeq2d 6078 . . 3 (𝜑 → ( ∥ “ {(𝑀 lcm 𝑁)}) = ( ∥ “ {(𝑀 · 𝑁)}))
3938difeq2d 4126 . 2 (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 lcm 𝑁)})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 · 𝑁)})))
4010, 39eqtrd 2777 1 (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 · 𝑁)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  wne 2940  cdif 3948  cin 3950  {csn 4626  cima 5688  cfv 6561  (class class class)co 7431  1c1 11156   · cmul 11160  cn 12266  0cn0 12526  cz 12613  abscabs 15273  cdvds 16290   gcd cgcd 16531   lcm clcm 16625  cprime 16708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-gcd 16532  df-lcm 16627  df-prm 16709
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator