| Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nzprmdif | Structured version Visualization version GIF version | ||
| Description: Subtract one prime's multiples from an unequal prime's. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
| Ref | Expression |
|---|---|
| nzprmdif.m | ⊢ (𝜑 → 𝑀 ∈ ℙ) |
| nzprmdif.n | ⊢ (𝜑 → 𝑁 ∈ ℙ) |
| nzprmdif.ne | ⊢ (𝜑 → 𝑀 ≠ 𝑁) |
| Ref | Expression |
|---|---|
| nzprmdif | ⊢ (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 · 𝑁)}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difin 4221 | . . 3 ⊢ (( ∥ “ {𝑀}) ∖ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁}))) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁})) | |
| 2 | nzprmdif.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℙ) | |
| 3 | prmz 16593 | . . . . . 6 ⊢ (𝑀 ∈ ℙ → 𝑀 ∈ ℤ) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 5 | nzprmdif.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℙ) | |
| 6 | prmz 16593 | . . . . . 6 ⊢ (𝑁 ∈ ℙ → 𝑁 ∈ ℤ) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 8 | 4, 7 | nzin 44475 | . . . 4 ⊢ (𝜑 → (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) = ( ∥ “ {(𝑀 lcm 𝑁)})) |
| 9 | 8 | difeq2d 4075 | . . 3 ⊢ (𝜑 → (( ∥ “ {𝑀}) ∖ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁}))) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 lcm 𝑁)}))) |
| 10 | 1, 9 | eqtr3id 2782 | . 2 ⊢ (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 lcm 𝑁)}))) |
| 11 | lcmgcd 16525 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁))) | |
| 12 | 4, 7, 11 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁))) |
| 13 | nzprmdif.ne | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ≠ 𝑁) | |
| 14 | prmrp 16630 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℙ ∧ 𝑁 ∈ ℙ) → ((𝑀 gcd 𝑁) = 1 ↔ 𝑀 ≠ 𝑁)) | |
| 15 | 2, 5, 14 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → ((𝑀 gcd 𝑁) = 1 ↔ 𝑀 ≠ 𝑁)) |
| 16 | 13, 15 | mpbird 257 | . . . . . . . 8 ⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) |
| 17 | 16 | oveq2d 7371 | . . . . . . 7 ⊢ (𝜑 → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = ((𝑀 lcm 𝑁) · 1)) |
| 18 | lcmcl 16519 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ0) | |
| 19 | 4, 7, 18 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → (𝑀 lcm 𝑁) ∈ ℕ0) |
| 20 | 19 | nn0cnd 12455 | . . . . . . . 8 ⊢ (𝜑 → (𝑀 lcm 𝑁) ∈ ℂ) |
| 21 | 20 | mulridd 11140 | . . . . . . 7 ⊢ (𝜑 → ((𝑀 lcm 𝑁) · 1) = (𝑀 lcm 𝑁)) |
| 22 | 17, 21 | eqtrd 2768 | . . . . . 6 ⊢ (𝜑 → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝑀 lcm 𝑁)) |
| 23 | 4 | zred 12587 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 24 | 7 | zred 12587 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 25 | 23, 24 | remulcld 11153 | . . . . . . 7 ⊢ (𝜑 → (𝑀 · 𝑁) ∈ ℝ) |
| 26 | prmnn 16592 | . . . . . . . . . . 11 ⊢ (𝑀 ∈ ℙ → 𝑀 ∈ ℕ) | |
| 27 | 2, 26 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 28 | 27 | nnnn0d 12453 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
| 29 | 28 | nn0ge0d 12456 | . . . . . . . 8 ⊢ (𝜑 → 0 ≤ 𝑀) |
| 30 | prmnn 16592 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℙ → 𝑁 ∈ ℕ) | |
| 31 | 5, 30 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 32 | 31 | nnnn0d 12453 | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 33 | 32 | nn0ge0d 12456 | . . . . . . . 8 ⊢ (𝜑 → 0 ≤ 𝑁) |
| 34 | 23, 24, 29, 33 | mulge0d 11705 | . . . . . . 7 ⊢ (𝜑 → 0 ≤ (𝑀 · 𝑁)) |
| 35 | 25, 34 | absidd 15337 | . . . . . 6 ⊢ (𝜑 → (abs‘(𝑀 · 𝑁)) = (𝑀 · 𝑁)) |
| 36 | 12, 22, 35 | 3eqtr3d 2776 | . . . . 5 ⊢ (𝜑 → (𝑀 lcm 𝑁) = (𝑀 · 𝑁)) |
| 37 | 36 | sneqd 4589 | . . . 4 ⊢ (𝜑 → {(𝑀 lcm 𝑁)} = {(𝑀 · 𝑁)}) |
| 38 | 37 | imaeq2d 6016 | . . 3 ⊢ (𝜑 → ( ∥ “ {(𝑀 lcm 𝑁)}) = ( ∥ “ {(𝑀 · 𝑁)})) |
| 39 | 38 | difeq2d 4075 | . 2 ⊢ (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 lcm 𝑁)})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 · 𝑁)}))) |
| 40 | 10, 39 | eqtrd 2768 | 1 ⊢ (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 · 𝑁)}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∖ cdif 3895 ∩ cin 3897 {csn 4577 “ cima 5624 ‘cfv 6489 (class class class)co 7355 1c1 11018 · cmul 11022 ℕcn 12136 ℕ0cn0 12392 ℤcz 12479 abscabs 15148 ∥ cdvds 16170 gcd cgcd 16412 lcm clcm 16506 ℙcprime 16589 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9337 df-inf 9338 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-n0 12393 df-z 12480 df-uz 12743 df-rp 12897 df-fl 13703 df-mod 13781 df-seq 13916 df-exp 13976 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-dvds 16171 df-gcd 16413 df-lcm 16508 df-prm 16590 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |