Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nzprmdif Structured version   Visualization version   GIF version

Theorem nzprmdif 44281
Description: Subtract one prime's multiples from an unequal prime's. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Hypotheses
Ref Expression
nzprmdif.m (𝜑𝑀 ∈ ℙ)
nzprmdif.n (𝜑𝑁 ∈ ℙ)
nzprmdif.ne (𝜑𝑀𝑁)
Assertion
Ref Expression
nzprmdif (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 · 𝑁)})))

Proof of Theorem nzprmdif
StepHypRef Expression
1 difin 4231 . . 3 (( ∥ “ {𝑀}) ∖ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁}))) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁}))
2 nzprmdif.m . . . . . 6 (𝜑𝑀 ∈ ℙ)
3 prmz 16621 . . . . . 6 (𝑀 ∈ ℙ → 𝑀 ∈ ℤ)
42, 3syl 17 . . . . 5 (𝜑𝑀 ∈ ℤ)
5 nzprmdif.n . . . . . 6 (𝜑𝑁 ∈ ℙ)
6 prmz 16621 . . . . . 6 (𝑁 ∈ ℙ → 𝑁 ∈ ℤ)
75, 6syl 17 . . . . 5 (𝜑𝑁 ∈ ℤ)
84, 7nzin 44280 . . . 4 (𝜑 → (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) = ( ∥ “ {(𝑀 lcm 𝑁)}))
98difeq2d 4085 . . 3 (𝜑 → (( ∥ “ {𝑀}) ∖ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁}))) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 lcm 𝑁)})))
101, 9eqtr3id 2778 . 2 (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 lcm 𝑁)})))
11 lcmgcd 16553 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁)))
124, 7, 11syl2anc 584 . . . . . 6 (𝜑 → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁)))
13 nzprmdif.ne . . . . . . . . 9 (𝜑𝑀𝑁)
14 prmrp 16658 . . . . . . . . . 10 ((𝑀 ∈ ℙ ∧ 𝑁 ∈ ℙ) → ((𝑀 gcd 𝑁) = 1 ↔ 𝑀𝑁))
152, 5, 14syl2anc 584 . . . . . . . . 9 (𝜑 → ((𝑀 gcd 𝑁) = 1 ↔ 𝑀𝑁))
1613, 15mpbird 257 . . . . . . . 8 (𝜑 → (𝑀 gcd 𝑁) = 1)
1716oveq2d 7385 . . . . . . 7 (𝜑 → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = ((𝑀 lcm 𝑁) · 1))
18 lcmcl 16547 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ0)
194, 7, 18syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑀 lcm 𝑁) ∈ ℕ0)
2019nn0cnd 12481 . . . . . . . 8 (𝜑 → (𝑀 lcm 𝑁) ∈ ℂ)
2120mulridd 11167 . . . . . . 7 (𝜑 → ((𝑀 lcm 𝑁) · 1) = (𝑀 lcm 𝑁))
2217, 21eqtrd 2764 . . . . . 6 (𝜑 → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝑀 lcm 𝑁))
234zred 12614 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
247zred 12614 . . . . . . . 8 (𝜑𝑁 ∈ ℝ)
2523, 24remulcld 11180 . . . . . . 7 (𝜑 → (𝑀 · 𝑁) ∈ ℝ)
26 prmnn 16620 . . . . . . . . . . 11 (𝑀 ∈ ℙ → 𝑀 ∈ ℕ)
272, 26syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
2827nnnn0d 12479 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ0)
2928nn0ge0d 12482 . . . . . . . 8 (𝜑 → 0 ≤ 𝑀)
30 prmnn 16620 . . . . . . . . . . 11 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ)
315, 30syl 17 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
3231nnnn0d 12479 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
3332nn0ge0d 12482 . . . . . . . 8 (𝜑 → 0 ≤ 𝑁)
3423, 24, 29, 33mulge0d 11731 . . . . . . 7 (𝜑 → 0 ≤ (𝑀 · 𝑁))
3525, 34absidd 15365 . . . . . 6 (𝜑 → (abs‘(𝑀 · 𝑁)) = (𝑀 · 𝑁))
3612, 22, 353eqtr3d 2772 . . . . 5 (𝜑 → (𝑀 lcm 𝑁) = (𝑀 · 𝑁))
3736sneqd 4597 . . . 4 (𝜑 → {(𝑀 lcm 𝑁)} = {(𝑀 · 𝑁)})
3837imaeq2d 6020 . . 3 (𝜑 → ( ∥ “ {(𝑀 lcm 𝑁)}) = ( ∥ “ {(𝑀 · 𝑁)}))
3938difeq2d 4085 . 2 (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 lcm 𝑁)})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 · 𝑁)})))
4010, 39eqtrd 2764 1 (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 · 𝑁)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wne 2925  cdif 3908  cin 3910  {csn 4585  cima 5634  cfv 6499  (class class class)co 7369  1c1 11045   · cmul 11049  cn 12162  0cn0 12418  cz 12505  abscabs 15176  cdvds 16198   gcd cgcd 16440   lcm clcm 16534  cprime 16617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-dvds 16199  df-gcd 16441  df-lcm 16536  df-prm 16618
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator