| Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nzprmdif | Structured version Visualization version GIF version | ||
| Description: Subtract one prime's multiples from an unequal prime's. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
| Ref | Expression |
|---|---|
| nzprmdif.m | ⊢ (𝜑 → 𝑀 ∈ ℙ) |
| nzprmdif.n | ⊢ (𝜑 → 𝑁 ∈ ℙ) |
| nzprmdif.ne | ⊢ (𝜑 → 𝑀 ≠ 𝑁) |
| Ref | Expression |
|---|---|
| nzprmdif | ⊢ (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 · 𝑁)}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difin 4247 | . . 3 ⊢ (( ∥ “ {𝑀}) ∖ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁}))) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁})) | |
| 2 | nzprmdif.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℙ) | |
| 3 | prmz 16694 | . . . . . 6 ⊢ (𝑀 ∈ ℙ → 𝑀 ∈ ℤ) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 5 | nzprmdif.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℙ) | |
| 6 | prmz 16694 | . . . . . 6 ⊢ (𝑁 ∈ ℙ → 𝑁 ∈ ℤ) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 8 | 4, 7 | nzin 44342 | . . . 4 ⊢ (𝜑 → (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) = ( ∥ “ {(𝑀 lcm 𝑁)})) |
| 9 | 8 | difeq2d 4101 | . . 3 ⊢ (𝜑 → (( ∥ “ {𝑀}) ∖ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁}))) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 lcm 𝑁)}))) |
| 10 | 1, 9 | eqtr3id 2784 | . 2 ⊢ (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 lcm 𝑁)}))) |
| 11 | lcmgcd 16626 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁))) | |
| 12 | 4, 7, 11 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁))) |
| 13 | nzprmdif.ne | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ≠ 𝑁) | |
| 14 | prmrp 16731 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℙ ∧ 𝑁 ∈ ℙ) → ((𝑀 gcd 𝑁) = 1 ↔ 𝑀 ≠ 𝑁)) | |
| 15 | 2, 5, 14 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → ((𝑀 gcd 𝑁) = 1 ↔ 𝑀 ≠ 𝑁)) |
| 16 | 13, 15 | mpbird 257 | . . . . . . . 8 ⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) |
| 17 | 16 | oveq2d 7421 | . . . . . . 7 ⊢ (𝜑 → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = ((𝑀 lcm 𝑁) · 1)) |
| 18 | lcmcl 16620 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ0) | |
| 19 | 4, 7, 18 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → (𝑀 lcm 𝑁) ∈ ℕ0) |
| 20 | 19 | nn0cnd 12564 | . . . . . . . 8 ⊢ (𝜑 → (𝑀 lcm 𝑁) ∈ ℂ) |
| 21 | 20 | mulridd 11252 | . . . . . . 7 ⊢ (𝜑 → ((𝑀 lcm 𝑁) · 1) = (𝑀 lcm 𝑁)) |
| 22 | 17, 21 | eqtrd 2770 | . . . . . 6 ⊢ (𝜑 → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝑀 lcm 𝑁)) |
| 23 | 4 | zred 12697 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 24 | 7 | zred 12697 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 25 | 23, 24 | remulcld 11265 | . . . . . . 7 ⊢ (𝜑 → (𝑀 · 𝑁) ∈ ℝ) |
| 26 | prmnn 16693 | . . . . . . . . . . 11 ⊢ (𝑀 ∈ ℙ → 𝑀 ∈ ℕ) | |
| 27 | 2, 26 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 28 | 27 | nnnn0d 12562 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
| 29 | 28 | nn0ge0d 12565 | . . . . . . . 8 ⊢ (𝜑 → 0 ≤ 𝑀) |
| 30 | prmnn 16693 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℙ → 𝑁 ∈ ℕ) | |
| 31 | 5, 30 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 32 | 31 | nnnn0d 12562 | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 33 | 32 | nn0ge0d 12565 | . . . . . . . 8 ⊢ (𝜑 → 0 ≤ 𝑁) |
| 34 | 23, 24, 29, 33 | mulge0d 11814 | . . . . . . 7 ⊢ (𝜑 → 0 ≤ (𝑀 · 𝑁)) |
| 35 | 25, 34 | absidd 15441 | . . . . . 6 ⊢ (𝜑 → (abs‘(𝑀 · 𝑁)) = (𝑀 · 𝑁)) |
| 36 | 12, 22, 35 | 3eqtr3d 2778 | . . . . 5 ⊢ (𝜑 → (𝑀 lcm 𝑁) = (𝑀 · 𝑁)) |
| 37 | 36 | sneqd 4613 | . . . 4 ⊢ (𝜑 → {(𝑀 lcm 𝑁)} = {(𝑀 · 𝑁)}) |
| 38 | 37 | imaeq2d 6047 | . . 3 ⊢ (𝜑 → ( ∥ “ {(𝑀 lcm 𝑁)}) = ( ∥ “ {(𝑀 · 𝑁)})) |
| 39 | 38 | difeq2d 4101 | . 2 ⊢ (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 lcm 𝑁)})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 · 𝑁)}))) |
| 40 | 10, 39 | eqtrd 2770 | 1 ⊢ (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 · 𝑁)}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∖ cdif 3923 ∩ cin 3925 {csn 4601 “ cima 5657 ‘cfv 6531 (class class class)co 7405 1c1 11130 · cmul 11134 ℕcn 12240 ℕ0cn0 12501 ℤcz 12588 abscabs 15253 ∥ cdvds 16272 gcd cgcd 16513 lcm clcm 16607 ℙcprime 16690 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-fl 13809 df-mod 13887 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-dvds 16273 df-gcd 16514 df-lcm 16609 df-prm 16691 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |