| Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nzprmdif | Structured version Visualization version GIF version | ||
| Description: Subtract one prime's multiples from an unequal prime's. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
| Ref | Expression |
|---|---|
| nzprmdif.m | ⊢ (𝜑 → 𝑀 ∈ ℙ) |
| nzprmdif.n | ⊢ (𝜑 → 𝑁 ∈ ℙ) |
| nzprmdif.ne | ⊢ (𝜑 → 𝑀 ≠ 𝑁) |
| Ref | Expression |
|---|---|
| nzprmdif | ⊢ (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 · 𝑁)}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difin 4231 | . . 3 ⊢ (( ∥ “ {𝑀}) ∖ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁}))) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁})) | |
| 2 | nzprmdif.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℙ) | |
| 3 | prmz 16621 | . . . . . 6 ⊢ (𝑀 ∈ ℙ → 𝑀 ∈ ℤ) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 5 | nzprmdif.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℙ) | |
| 6 | prmz 16621 | . . . . . 6 ⊢ (𝑁 ∈ ℙ → 𝑁 ∈ ℤ) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 8 | 4, 7 | nzin 44280 | . . . 4 ⊢ (𝜑 → (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) = ( ∥ “ {(𝑀 lcm 𝑁)})) |
| 9 | 8 | difeq2d 4085 | . . 3 ⊢ (𝜑 → (( ∥ “ {𝑀}) ∖ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁}))) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 lcm 𝑁)}))) |
| 10 | 1, 9 | eqtr3id 2778 | . 2 ⊢ (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 lcm 𝑁)}))) |
| 11 | lcmgcd 16553 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁))) | |
| 12 | 4, 7, 11 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁))) |
| 13 | nzprmdif.ne | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ≠ 𝑁) | |
| 14 | prmrp 16658 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℙ ∧ 𝑁 ∈ ℙ) → ((𝑀 gcd 𝑁) = 1 ↔ 𝑀 ≠ 𝑁)) | |
| 15 | 2, 5, 14 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → ((𝑀 gcd 𝑁) = 1 ↔ 𝑀 ≠ 𝑁)) |
| 16 | 13, 15 | mpbird 257 | . . . . . . . 8 ⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) |
| 17 | 16 | oveq2d 7385 | . . . . . . 7 ⊢ (𝜑 → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = ((𝑀 lcm 𝑁) · 1)) |
| 18 | lcmcl 16547 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ0) | |
| 19 | 4, 7, 18 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → (𝑀 lcm 𝑁) ∈ ℕ0) |
| 20 | 19 | nn0cnd 12481 | . . . . . . . 8 ⊢ (𝜑 → (𝑀 lcm 𝑁) ∈ ℂ) |
| 21 | 20 | mulridd 11167 | . . . . . . 7 ⊢ (𝜑 → ((𝑀 lcm 𝑁) · 1) = (𝑀 lcm 𝑁)) |
| 22 | 17, 21 | eqtrd 2764 | . . . . . 6 ⊢ (𝜑 → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝑀 lcm 𝑁)) |
| 23 | 4 | zred 12614 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 24 | 7 | zred 12614 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 25 | 23, 24 | remulcld 11180 | . . . . . . 7 ⊢ (𝜑 → (𝑀 · 𝑁) ∈ ℝ) |
| 26 | prmnn 16620 | . . . . . . . . . . 11 ⊢ (𝑀 ∈ ℙ → 𝑀 ∈ ℕ) | |
| 27 | 2, 26 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 28 | 27 | nnnn0d 12479 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
| 29 | 28 | nn0ge0d 12482 | . . . . . . . 8 ⊢ (𝜑 → 0 ≤ 𝑀) |
| 30 | prmnn 16620 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℙ → 𝑁 ∈ ℕ) | |
| 31 | 5, 30 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 32 | 31 | nnnn0d 12479 | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 33 | 32 | nn0ge0d 12482 | . . . . . . . 8 ⊢ (𝜑 → 0 ≤ 𝑁) |
| 34 | 23, 24, 29, 33 | mulge0d 11731 | . . . . . . 7 ⊢ (𝜑 → 0 ≤ (𝑀 · 𝑁)) |
| 35 | 25, 34 | absidd 15365 | . . . . . 6 ⊢ (𝜑 → (abs‘(𝑀 · 𝑁)) = (𝑀 · 𝑁)) |
| 36 | 12, 22, 35 | 3eqtr3d 2772 | . . . . 5 ⊢ (𝜑 → (𝑀 lcm 𝑁) = (𝑀 · 𝑁)) |
| 37 | 36 | sneqd 4597 | . . . 4 ⊢ (𝜑 → {(𝑀 lcm 𝑁)} = {(𝑀 · 𝑁)}) |
| 38 | 37 | imaeq2d 6020 | . . 3 ⊢ (𝜑 → ( ∥ “ {(𝑀 lcm 𝑁)}) = ( ∥ “ {(𝑀 · 𝑁)})) |
| 39 | 38 | difeq2d 4085 | . 2 ⊢ (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 lcm 𝑁)})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 · 𝑁)}))) |
| 40 | 10, 39 | eqtrd 2764 | 1 ⊢ (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 · 𝑁)}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3908 ∩ cin 3910 {csn 4585 “ cima 5634 ‘cfv 6499 (class class class)co 7369 1c1 11045 · cmul 11049 ℕcn 12162 ℕ0cn0 12418 ℤcz 12505 abscabs 15176 ∥ cdvds 16198 gcd cgcd 16440 lcm clcm 16534 ℙcprime 16617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-fl 13730 df-mod 13808 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-dvds 16199 df-gcd 16441 df-lcm 16536 df-prm 16618 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |