Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nzprmdif Structured version   Visualization version   GIF version

Theorem nzprmdif 41023
Description: Subtract one prime's multiples from an unequal prime's. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Hypotheses
Ref Expression
nzprmdif.m (𝜑𝑀 ∈ ℙ)
nzprmdif.n (𝜑𝑁 ∈ ℙ)
nzprmdif.ne (𝜑𝑀𝑁)
Assertion
Ref Expression
nzprmdif (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 · 𝑁)})))

Proof of Theorem nzprmdif
StepHypRef Expression
1 difin 4188 . . 3 (( ∥ “ {𝑀}) ∖ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁}))) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁}))
2 nzprmdif.m . . . . . 6 (𝜑𝑀 ∈ ℙ)
3 prmz 16009 . . . . . 6 (𝑀 ∈ ℙ → 𝑀 ∈ ℤ)
42, 3syl 17 . . . . 5 (𝜑𝑀 ∈ ℤ)
5 nzprmdif.n . . . . . 6 (𝜑𝑁 ∈ ℙ)
6 prmz 16009 . . . . . 6 (𝑁 ∈ ℙ → 𝑁 ∈ ℤ)
75, 6syl 17 . . . . 5 (𝜑𝑁 ∈ ℤ)
84, 7nzin 41022 . . . 4 (𝜑 → (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) = ( ∥ “ {(𝑀 lcm 𝑁)}))
98difeq2d 4050 . . 3 (𝜑 → (( ∥ “ {𝑀}) ∖ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁}))) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 lcm 𝑁)})))
101, 9syl5eqr 2847 . 2 (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 lcm 𝑁)})))
11 lcmgcd 15941 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁)))
124, 7, 11syl2anc 587 . . . . . 6 (𝜑 → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁)))
13 nzprmdif.ne . . . . . . . . 9 (𝜑𝑀𝑁)
14 prmrp 16046 . . . . . . . . . 10 ((𝑀 ∈ ℙ ∧ 𝑁 ∈ ℙ) → ((𝑀 gcd 𝑁) = 1 ↔ 𝑀𝑁))
152, 5, 14syl2anc 587 . . . . . . . . 9 (𝜑 → ((𝑀 gcd 𝑁) = 1 ↔ 𝑀𝑁))
1613, 15mpbird 260 . . . . . . . 8 (𝜑 → (𝑀 gcd 𝑁) = 1)
1716oveq2d 7151 . . . . . . 7 (𝜑 → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = ((𝑀 lcm 𝑁) · 1))
18 lcmcl 15935 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ0)
194, 7, 18syl2anc 587 . . . . . . . . 9 (𝜑 → (𝑀 lcm 𝑁) ∈ ℕ0)
2019nn0cnd 11945 . . . . . . . 8 (𝜑 → (𝑀 lcm 𝑁) ∈ ℂ)
2120mulid1d 10647 . . . . . . 7 (𝜑 → ((𝑀 lcm 𝑁) · 1) = (𝑀 lcm 𝑁))
2217, 21eqtrd 2833 . . . . . 6 (𝜑 → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝑀 lcm 𝑁))
234zred 12075 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
247zred 12075 . . . . . . . 8 (𝜑𝑁 ∈ ℝ)
2523, 24remulcld 10660 . . . . . . 7 (𝜑 → (𝑀 · 𝑁) ∈ ℝ)
26 prmnn 16008 . . . . . . . . . . 11 (𝑀 ∈ ℙ → 𝑀 ∈ ℕ)
272, 26syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
2827nnnn0d 11943 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ0)
2928nn0ge0d 11946 . . . . . . . 8 (𝜑 → 0 ≤ 𝑀)
30 prmnn 16008 . . . . . . . . . . 11 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ)
315, 30syl 17 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
3231nnnn0d 11943 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
3332nn0ge0d 11946 . . . . . . . 8 (𝜑 → 0 ≤ 𝑁)
3423, 24, 29, 33mulge0d 11206 . . . . . . 7 (𝜑 → 0 ≤ (𝑀 · 𝑁))
3525, 34absidd 14774 . . . . . 6 (𝜑 → (abs‘(𝑀 · 𝑁)) = (𝑀 · 𝑁))
3612, 22, 353eqtr3d 2841 . . . . 5 (𝜑 → (𝑀 lcm 𝑁) = (𝑀 · 𝑁))
3736sneqd 4537 . . . 4 (𝜑 → {(𝑀 lcm 𝑁)} = {(𝑀 · 𝑁)})
3837imaeq2d 5896 . . 3 (𝜑 → ( ∥ “ {(𝑀 lcm 𝑁)}) = ( ∥ “ {(𝑀 · 𝑁)}))
3938difeq2d 4050 . 2 (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 lcm 𝑁)})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 · 𝑁)})))
4010, 39eqtrd 2833 1 (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 · 𝑁)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wcel 2111  wne 2987  cdif 3878  cin 3880  {csn 4525  cima 5522  cfv 6324  (class class class)co 7135  1c1 10527   · cmul 10531  cn 11625  0cn0 11885  cz 11969  abscabs 14585  cdvds 15599   gcd cgcd 15833   lcm clcm 15922  cprime 16005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-gcd 15834  df-lcm 15924  df-prm 16006
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator