| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfsdom2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of strict dominance. Compare Definition 3 of [Suppes] p. 97. (Contributed by NM, 31-Mar-1998.) |
| Ref | Expression |
|---|---|
| dfsdom2 | ⊢ ≺ = ( ≼ ∖ ◡ ≼ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sdom 8924 | . 2 ⊢ ≺ = ( ≼ ∖ ≈ ) | |
| 2 | sbthcl 9069 | . . 3 ⊢ ≈ = ( ≼ ∩ ◡ ≼ ) | |
| 3 | 2 | difeq2i 4089 | . 2 ⊢ ( ≼ ∖ ≈ ) = ( ≼ ∖ ( ≼ ∩ ◡ ≼ )) |
| 4 | difin 4238 | . 2 ⊢ ( ≼ ∖ ( ≼ ∩ ◡ ≼ )) = ( ≼ ∖ ◡ ≼ ) | |
| 5 | 1, 3, 4 | 3eqtri 2757 | 1 ⊢ ≺ = ( ≼ ∖ ◡ ≼ ) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3914 ∩ cin 3916 ◡ccnv 5640 ≈ cen 8918 ≼ cdom 8919 ≺ csdm 8920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 |
| This theorem is referenced by: brsdom2 9071 |
| Copyright terms: Public domain | W3C validator |