MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfsdom2 Structured version   Visualization version   GIF version

Theorem dfsdom2 9024
Description: Alternate definition of strict dominance. Compare Definition 3 of [Suppes] p. 97. (Contributed by NM, 31-Mar-1998.)
Assertion
Ref Expression
dfsdom2 ≺ = ( ≼ ∖ ≼ )

Proof of Theorem dfsdom2
StepHypRef Expression
1 df-sdom 8882 . 2 ≺ = ( ≼ ∖ ≈ )
2 sbthcl 9023 . . 3 ≈ = ( ≼ ∩ ≼ )
32difeq2i 4072 . 2 ( ≼ ∖ ≈ ) = ( ≼ ∖ ( ≼ ∩ ≼ ))
4 difin 4221 . 2 ( ≼ ∖ ( ≼ ∩ ≼ )) = ( ≼ ∖ ≼ )
51, 3, 43eqtri 2760 1 ≺ = ( ≼ ∖ ≼ )
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cdif 3895  cin 3897  ccnv 5620  cen 8876  cdom 8877  csdm 8878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882
This theorem is referenced by:  brsdom2  9025
  Copyright terms: Public domain W3C validator