![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfsdom2 | Structured version Visualization version GIF version |
Description: Alternate definition of strict dominance. Compare Definition 3 of [Suppes] p. 97. (Contributed by NM, 31-Mar-1998.) |
Ref | Expression |
---|---|
dfsdom2 | ⊢ ≺ = ( ≼ ∖ ◡ ≼ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sdom 9008 | . 2 ⊢ ≺ = ( ≼ ∖ ≈ ) | |
2 | sbthcl 9163 | . . 3 ⊢ ≈ = ( ≼ ∩ ◡ ≼ ) | |
3 | 2 | difeq2i 4146 | . 2 ⊢ ( ≼ ∖ ≈ ) = ( ≼ ∖ ( ≼ ∩ ◡ ≼ )) |
4 | difin 4291 | . 2 ⊢ ( ≼ ∖ ( ≼ ∩ ◡ ≼ )) = ( ≼ ∖ ◡ ≼ ) | |
5 | 1, 3, 4 | 3eqtri 2772 | 1 ⊢ ≺ = ( ≼ ∖ ◡ ≼ ) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∖ cdif 3973 ∩ cin 3975 ◡ccnv 5699 ≈ cen 9002 ≼ cdom 9003 ≺ csdm 9004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-er 8765 df-en 9006 df-dom 9007 df-sdom 9008 |
This theorem is referenced by: brsdom2 9165 |
Copyright terms: Public domain | W3C validator |