Step | Hyp | Ref
| Expression |
1 | | breq2 5074 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝐴 𝑀ℋ 𝑥 ↔ 𝐴 𝑀ℋ 𝑦)) |
2 | 1 | cbvralvw 3372 |
. . . 4
⊢
(∀𝑥 ∈
Cℋ 𝐴 𝑀ℋ 𝑥 ↔ ∀𝑦 ∈
Cℋ 𝐴 𝑀ℋ 𝑦) |
3 | | mdbr 30557 |
. . . . . 6
⊢ ((𝐴 ∈
Cℋ ∧ 𝑦 ∈ Cℋ )
→ (𝐴
𝑀ℋ 𝑦 ↔ ∀𝑥 ∈ Cℋ
(𝑥 ⊆ 𝑦 → ((𝑥 ∨ℋ 𝐴) ∩ 𝑦) = (𝑥 ∨ℋ (𝐴 ∩ 𝑦))))) |
4 | | chjcom 29769 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈
Cℋ ∧ 𝑥 ∈ Cℋ )
→ (𝐴
∨ℋ 𝑥) =
(𝑥 ∨ℋ
𝐴)) |
5 | 4 | ineq1d 4142 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈
Cℋ ∧ 𝑥 ∈ Cℋ )
→ ((𝐴
∨ℋ 𝑥)
∩ 𝑦) = ((𝑥 ∨ℋ 𝐴) ∩ 𝑦)) |
6 | | incom 4131 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∨ℋ 𝑥) ∩ 𝑦) = (𝑦 ∩ (𝐴 ∨ℋ 𝑥)) |
7 | 5, 6 | eqtr3di 2794 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈
Cℋ ∧ 𝑥 ∈ Cℋ )
→ ((𝑥
∨ℋ 𝐴)
∩ 𝑦) = (𝑦 ∩ (𝐴 ∨ℋ 𝑥))) |
8 | 7 | adantlr 711 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
Cℋ ∧ 𝑦 ∈ Cℋ )
∧ 𝑥 ∈
Cℋ ) → ((𝑥 ∨ℋ 𝐴) ∩ 𝑦) = (𝑦 ∩ (𝐴 ∨ℋ 𝑥))) |
9 | | chincl 29762 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈
Cℋ ∧ 𝑦 ∈ Cℋ )
→ (𝐴 ∩ 𝑦) ∈
Cℋ ) |
10 | | chjcom 29769 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∩ 𝑦) ∈ Cℋ
∧ 𝑥 ∈
Cℋ ) → ((𝐴 ∩ 𝑦) ∨ℋ 𝑥) = (𝑥 ∨ℋ (𝐴 ∩ 𝑦))) |
11 | 9, 10 | sylan 579 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
Cℋ ∧ 𝑦 ∈ Cℋ )
∧ 𝑥 ∈
Cℋ ) → ((𝐴 ∩ 𝑦) ∨ℋ 𝑥) = (𝑥 ∨ℋ (𝐴 ∩ 𝑦))) |
12 | | incom 4131 |
. . . . . . . . . . . 12
⊢ (𝐴 ∩ 𝑦) = (𝑦 ∩ 𝐴) |
13 | 12 | oveq1i 7265 |
. . . . . . . . . . 11
⊢ ((𝐴 ∩ 𝑦) ∨ℋ 𝑥) = ((𝑦 ∩ 𝐴) ∨ℋ 𝑥) |
14 | 11, 13 | eqtr3di 2794 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
Cℋ ∧ 𝑦 ∈ Cℋ )
∧ 𝑥 ∈
Cℋ ) → (𝑥 ∨ℋ (𝐴 ∩ 𝑦)) = ((𝑦 ∩ 𝐴) ∨ℋ 𝑥)) |
15 | 8, 14 | eqeq12d 2754 |
. . . . . . . . 9
⊢ (((𝐴 ∈
Cℋ ∧ 𝑦 ∈ Cℋ )
∧ 𝑥 ∈
Cℋ ) → (((𝑥 ∨ℋ 𝐴) ∩ 𝑦) = (𝑥 ∨ℋ (𝐴 ∩ 𝑦)) ↔ (𝑦 ∩ (𝐴 ∨ℋ 𝑥)) = ((𝑦 ∩ 𝐴) ∨ℋ 𝑥))) |
16 | | eqcom 2745 |
. . . . . . . . 9
⊢ ((𝑦 ∩ (𝐴 ∨ℋ 𝑥)) = ((𝑦 ∩ 𝐴) ∨ℋ 𝑥) ↔ ((𝑦 ∩ 𝐴) ∨ℋ 𝑥) = (𝑦 ∩ (𝐴 ∨ℋ 𝑥))) |
17 | 15, 16 | bitrdi 286 |
. . . . . . . 8
⊢ (((𝐴 ∈
Cℋ ∧ 𝑦 ∈ Cℋ )
∧ 𝑥 ∈
Cℋ ) → (((𝑥 ∨ℋ 𝐴) ∩ 𝑦) = (𝑥 ∨ℋ (𝐴 ∩ 𝑦)) ↔ ((𝑦 ∩ 𝐴) ∨ℋ 𝑥) = (𝑦 ∩ (𝐴 ∨ℋ 𝑥)))) |
18 | 17 | imbi2d 340 |
. . . . . . 7
⊢ (((𝐴 ∈
Cℋ ∧ 𝑦 ∈ Cℋ )
∧ 𝑥 ∈
Cℋ ) → ((𝑥 ⊆ 𝑦 → ((𝑥 ∨ℋ 𝐴) ∩ 𝑦) = (𝑥 ∨ℋ (𝐴 ∩ 𝑦))) ↔ (𝑥 ⊆ 𝑦 → ((𝑦 ∩ 𝐴) ∨ℋ 𝑥) = (𝑦 ∩ (𝐴 ∨ℋ 𝑥))))) |
19 | 18 | ralbidva 3119 |
. . . . . 6
⊢ ((𝐴 ∈
Cℋ ∧ 𝑦 ∈ Cℋ )
→ (∀𝑥 ∈
Cℋ (𝑥 ⊆ 𝑦 → ((𝑥 ∨ℋ 𝐴) ∩ 𝑦) = (𝑥 ∨ℋ (𝐴 ∩ 𝑦))) ↔ ∀𝑥 ∈ Cℋ
(𝑥 ⊆ 𝑦 → ((𝑦 ∩ 𝐴) ∨ℋ 𝑥) = (𝑦 ∩ (𝐴 ∨ℋ 𝑥))))) |
20 | 3, 19 | bitrd 278 |
. . . . 5
⊢ ((𝐴 ∈
Cℋ ∧ 𝑦 ∈ Cℋ )
→ (𝐴
𝑀ℋ 𝑦 ↔ ∀𝑥 ∈ Cℋ
(𝑥 ⊆ 𝑦 → ((𝑦 ∩ 𝐴) ∨ℋ 𝑥) = (𝑦 ∩ (𝐴 ∨ℋ 𝑥))))) |
21 | 20 | ralbidva 3119 |
. . . 4
⊢ (𝐴 ∈
Cℋ → (∀𝑦 ∈ Cℋ
𝐴
𝑀ℋ 𝑦 ↔ ∀𝑦 ∈ Cℋ
∀𝑥 ∈
Cℋ (𝑥 ⊆ 𝑦 → ((𝑦 ∩ 𝐴) ∨ℋ 𝑥) = (𝑦 ∩ (𝐴 ∨ℋ 𝑥))))) |
22 | 2, 21 | syl5bb 282 |
. . 3
⊢ (𝐴 ∈
Cℋ → (∀𝑥 ∈ Cℋ
𝐴
𝑀ℋ 𝑥 ↔ ∀𝑦 ∈ Cℋ
∀𝑥 ∈
Cℋ (𝑥 ⊆ 𝑦 → ((𝑦 ∩ 𝐴) ∨ℋ 𝑥) = (𝑦 ∩ (𝐴 ∨ℋ 𝑥))))) |
23 | | ralcom 3280 |
. . 3
⊢
(∀𝑦 ∈
Cℋ ∀𝑥 ∈ Cℋ
(𝑥 ⊆ 𝑦 → ((𝑦 ∩ 𝐴) ∨ℋ 𝑥) = (𝑦 ∩ (𝐴 ∨ℋ 𝑥))) ↔ ∀𝑥 ∈ Cℋ
∀𝑦 ∈
Cℋ (𝑥 ⊆ 𝑦 → ((𝑦 ∩ 𝐴) ∨ℋ 𝑥) = (𝑦 ∩ (𝐴 ∨ℋ 𝑥)))) |
24 | 22, 23 | bitrdi 286 |
. 2
⊢ (𝐴 ∈
Cℋ → (∀𝑥 ∈ Cℋ
𝐴
𝑀ℋ 𝑥 ↔ ∀𝑥 ∈ Cℋ
∀𝑦 ∈
Cℋ (𝑥 ⊆ 𝑦 → ((𝑦 ∩ 𝐴) ∨ℋ 𝑥) = (𝑦 ∩ (𝐴 ∨ℋ 𝑥))))) |
25 | | dmdbr 30562 |
. . 3
⊢ ((𝐴 ∈
Cℋ ∧ 𝑥 ∈ Cℋ )
→ (𝐴
𝑀ℋ* 𝑥 ↔ ∀𝑦 ∈ Cℋ
(𝑥 ⊆ 𝑦 → ((𝑦 ∩ 𝐴) ∨ℋ 𝑥) = (𝑦 ∩ (𝐴 ∨ℋ 𝑥))))) |
26 | 25 | ralbidva 3119 |
. 2
⊢ (𝐴 ∈
Cℋ → (∀𝑥 ∈ Cℋ
𝐴
𝑀ℋ* 𝑥 ↔ ∀𝑥 ∈ Cℋ
∀𝑦 ∈
Cℋ (𝑥 ⊆ 𝑦 → ((𝑦 ∩ 𝐴) ∨ℋ 𝑥) = (𝑦 ∩ (𝐴 ∨ℋ 𝑥))))) |
27 | 24, 26 | bitr4d 281 |
1
⊢ (𝐴 ∈
Cℋ → (∀𝑥 ∈ Cℋ
𝐴
𝑀ℋ 𝑥 ↔ ∀𝑥 ∈ Cℋ
𝐴
𝑀ℋ* 𝑥)) |