HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mddmd2 Structured version   Visualization version   GIF version

Theorem mddmd2 32341
Description: Relationship between modular pairs and dual-modular pairs. Lemma 1.2 of [MaedaMaeda] p. 1. (Contributed by NM, 21-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
mddmd2 (𝐴C → (∀𝑥C 𝐴 𝑀 𝑥 ↔ ∀𝑥C 𝐴 𝑀* 𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem mddmd2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 breq2 5170 . . . . 5 (𝑥 = 𝑦 → (𝐴 𝑀 𝑥𝐴 𝑀 𝑦))
21cbvralvw 3243 . . . 4 (∀𝑥C 𝐴 𝑀 𝑥 ↔ ∀𝑦C 𝐴 𝑀 𝑦)
3 mdbr 32326 . . . . . 6 ((𝐴C𝑦C ) → (𝐴 𝑀 𝑦 ↔ ∀𝑥C (𝑥𝑦 → ((𝑥 𝐴) ∩ 𝑦) = (𝑥 (𝐴𝑦)))))
4 chjcom 31538 . . . . . . . . . . . . 13 ((𝐴C𝑥C ) → (𝐴 𝑥) = (𝑥 𝐴))
54ineq1d 4240 . . . . . . . . . . . 12 ((𝐴C𝑥C ) → ((𝐴 𝑥) ∩ 𝑦) = ((𝑥 𝐴) ∩ 𝑦))
6 incom 4230 . . . . . . . . . . . 12 ((𝐴 𝑥) ∩ 𝑦) = (𝑦 ∩ (𝐴 𝑥))
75, 6eqtr3di 2795 . . . . . . . . . . 11 ((𝐴C𝑥C ) → ((𝑥 𝐴) ∩ 𝑦) = (𝑦 ∩ (𝐴 𝑥)))
87adantlr 714 . . . . . . . . . 10 (((𝐴C𝑦C ) ∧ 𝑥C ) → ((𝑥 𝐴) ∩ 𝑦) = (𝑦 ∩ (𝐴 𝑥)))
9 chincl 31531 . . . . . . . . . . . 12 ((𝐴C𝑦C ) → (𝐴𝑦) ∈ C )
10 chjcom 31538 . . . . . . . . . . . 12 (((𝐴𝑦) ∈ C𝑥C ) → ((𝐴𝑦) ∨ 𝑥) = (𝑥 (𝐴𝑦)))
119, 10sylan 579 . . . . . . . . . . 11 (((𝐴C𝑦C ) ∧ 𝑥C ) → ((𝐴𝑦) ∨ 𝑥) = (𝑥 (𝐴𝑦)))
12 incom 4230 . . . . . . . . . . . 12 (𝐴𝑦) = (𝑦𝐴)
1312oveq1i 7458 . . . . . . . . . . 11 ((𝐴𝑦) ∨ 𝑥) = ((𝑦𝐴) ∨ 𝑥)
1411, 13eqtr3di 2795 . . . . . . . . . 10 (((𝐴C𝑦C ) ∧ 𝑥C ) → (𝑥 (𝐴𝑦)) = ((𝑦𝐴) ∨ 𝑥))
158, 14eqeq12d 2756 . . . . . . . . 9 (((𝐴C𝑦C ) ∧ 𝑥C ) → (((𝑥 𝐴) ∩ 𝑦) = (𝑥 (𝐴𝑦)) ↔ (𝑦 ∩ (𝐴 𝑥)) = ((𝑦𝐴) ∨ 𝑥)))
16 eqcom 2747 . . . . . . . . 9 ((𝑦 ∩ (𝐴 𝑥)) = ((𝑦𝐴) ∨ 𝑥) ↔ ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥)))
1715, 16bitrdi 287 . . . . . . . 8 (((𝐴C𝑦C ) ∧ 𝑥C ) → (((𝑥 𝐴) ∩ 𝑦) = (𝑥 (𝐴𝑦)) ↔ ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥))))
1817imbi2d 340 . . . . . . 7 (((𝐴C𝑦C ) ∧ 𝑥C ) → ((𝑥𝑦 → ((𝑥 𝐴) ∩ 𝑦) = (𝑥 (𝐴𝑦))) ↔ (𝑥𝑦 → ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥)))))
1918ralbidva 3182 . . . . . 6 ((𝐴C𝑦C ) → (∀𝑥C (𝑥𝑦 → ((𝑥 𝐴) ∩ 𝑦) = (𝑥 (𝐴𝑦))) ↔ ∀𝑥C (𝑥𝑦 → ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥)))))
203, 19bitrd 279 . . . . 5 ((𝐴C𝑦C ) → (𝐴 𝑀 𝑦 ↔ ∀𝑥C (𝑥𝑦 → ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥)))))
2120ralbidva 3182 . . . 4 (𝐴C → (∀𝑦C 𝐴 𝑀 𝑦 ↔ ∀𝑦C𝑥C (𝑥𝑦 → ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥)))))
222, 21bitrid 283 . . 3 (𝐴C → (∀𝑥C 𝐴 𝑀 𝑥 ↔ ∀𝑦C𝑥C (𝑥𝑦 → ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥)))))
23 ralcom 3295 . . 3 (∀𝑦C𝑥C (𝑥𝑦 → ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥))) ↔ ∀𝑥C𝑦C (𝑥𝑦 → ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥))))
2422, 23bitrdi 287 . 2 (𝐴C → (∀𝑥C 𝐴 𝑀 𝑥 ↔ ∀𝑥C𝑦C (𝑥𝑦 → ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥)))))
25 dmdbr 32331 . . 3 ((𝐴C𝑥C ) → (𝐴 𝑀* 𝑥 ↔ ∀𝑦C (𝑥𝑦 → ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥)))))
2625ralbidva 3182 . 2 (𝐴C → (∀𝑥C 𝐴 𝑀* 𝑥 ↔ ∀𝑥C𝑦C (𝑥𝑦 → ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥)))))
2724, 26bitr4d 282 1 (𝐴C → (∀𝑥C 𝐴 𝑀 𝑥 ↔ ∀𝑥C 𝐴 𝑀* 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  cin 3975  wss 3976   class class class wbr 5166  (class class class)co 7448   C cch 30961   chj 30965   𝑀 cmd 30998   𝑀* cdmd 30999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-1cn 11242  ax-addcl 11244  ax-hilex 31031  ax-hfvadd 31032  ax-hv0cl 31035  ax-hfvmul 31037
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-map 8886  df-nn 12294  df-hlim 31004  df-sh 31239  df-ch 31253  df-chj 31342  df-md 32312  df-dmd 32313
This theorem is referenced by:  atmd  32431
  Copyright terms: Public domain W3C validator