HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mddmd2 Structured version   Visualization version   GIF version

Theorem mddmd2 32287
Description: Relationship between modular pairs and dual-modular pairs. Lemma 1.2 of [MaedaMaeda] p. 1. (Contributed by NM, 21-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
mddmd2 (𝐴C → (∀𝑥C 𝐴 𝑀 𝑥 ↔ ∀𝑥C 𝐴 𝑀* 𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem mddmd2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 breq2 5095 . . . . 5 (𝑥 = 𝑦 → (𝐴 𝑀 𝑥𝐴 𝑀 𝑦))
21cbvralvw 3210 . . . 4 (∀𝑥C 𝐴 𝑀 𝑥 ↔ ∀𝑦C 𝐴 𝑀 𝑦)
3 mdbr 32272 . . . . . 6 ((𝐴C𝑦C ) → (𝐴 𝑀 𝑦 ↔ ∀𝑥C (𝑥𝑦 → ((𝑥 𝐴) ∩ 𝑦) = (𝑥 (𝐴𝑦)))))
4 chjcom 31484 . . . . . . . . . . . . 13 ((𝐴C𝑥C ) → (𝐴 𝑥) = (𝑥 𝐴))
54ineq1d 4169 . . . . . . . . . . . 12 ((𝐴C𝑥C ) → ((𝐴 𝑥) ∩ 𝑦) = ((𝑥 𝐴) ∩ 𝑦))
6 incom 4159 . . . . . . . . . . . 12 ((𝐴 𝑥) ∩ 𝑦) = (𝑦 ∩ (𝐴 𝑥))
75, 6eqtr3di 2781 . . . . . . . . . . 11 ((𝐴C𝑥C ) → ((𝑥 𝐴) ∩ 𝑦) = (𝑦 ∩ (𝐴 𝑥)))
87adantlr 715 . . . . . . . . . 10 (((𝐴C𝑦C ) ∧ 𝑥C ) → ((𝑥 𝐴) ∩ 𝑦) = (𝑦 ∩ (𝐴 𝑥)))
9 chincl 31477 . . . . . . . . . . . 12 ((𝐴C𝑦C ) → (𝐴𝑦) ∈ C )
10 chjcom 31484 . . . . . . . . . . . 12 (((𝐴𝑦) ∈ C𝑥C ) → ((𝐴𝑦) ∨ 𝑥) = (𝑥 (𝐴𝑦)))
119, 10sylan 580 . . . . . . . . . . 11 (((𝐴C𝑦C ) ∧ 𝑥C ) → ((𝐴𝑦) ∨ 𝑥) = (𝑥 (𝐴𝑦)))
12 incom 4159 . . . . . . . . . . . 12 (𝐴𝑦) = (𝑦𝐴)
1312oveq1i 7356 . . . . . . . . . . 11 ((𝐴𝑦) ∨ 𝑥) = ((𝑦𝐴) ∨ 𝑥)
1411, 13eqtr3di 2781 . . . . . . . . . 10 (((𝐴C𝑦C ) ∧ 𝑥C ) → (𝑥 (𝐴𝑦)) = ((𝑦𝐴) ∨ 𝑥))
158, 14eqeq12d 2747 . . . . . . . . 9 (((𝐴C𝑦C ) ∧ 𝑥C ) → (((𝑥 𝐴) ∩ 𝑦) = (𝑥 (𝐴𝑦)) ↔ (𝑦 ∩ (𝐴 𝑥)) = ((𝑦𝐴) ∨ 𝑥)))
16 eqcom 2738 . . . . . . . . 9 ((𝑦 ∩ (𝐴 𝑥)) = ((𝑦𝐴) ∨ 𝑥) ↔ ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥)))
1715, 16bitrdi 287 . . . . . . . 8 (((𝐴C𝑦C ) ∧ 𝑥C ) → (((𝑥 𝐴) ∩ 𝑦) = (𝑥 (𝐴𝑦)) ↔ ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥))))
1817imbi2d 340 . . . . . . 7 (((𝐴C𝑦C ) ∧ 𝑥C ) → ((𝑥𝑦 → ((𝑥 𝐴) ∩ 𝑦) = (𝑥 (𝐴𝑦))) ↔ (𝑥𝑦 → ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥)))))
1918ralbidva 3153 . . . . . 6 ((𝐴C𝑦C ) → (∀𝑥C (𝑥𝑦 → ((𝑥 𝐴) ∩ 𝑦) = (𝑥 (𝐴𝑦))) ↔ ∀𝑥C (𝑥𝑦 → ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥)))))
203, 19bitrd 279 . . . . 5 ((𝐴C𝑦C ) → (𝐴 𝑀 𝑦 ↔ ∀𝑥C (𝑥𝑦 → ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥)))))
2120ralbidva 3153 . . . 4 (𝐴C → (∀𝑦C 𝐴 𝑀 𝑦 ↔ ∀𝑦C𝑥C (𝑥𝑦 → ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥)))))
222, 21bitrid 283 . . 3 (𝐴C → (∀𝑥C 𝐴 𝑀 𝑥 ↔ ∀𝑦C𝑥C (𝑥𝑦 → ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥)))))
23 ralcom 3260 . . 3 (∀𝑦C𝑥C (𝑥𝑦 → ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥))) ↔ ∀𝑥C𝑦C (𝑥𝑦 → ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥))))
2422, 23bitrdi 287 . 2 (𝐴C → (∀𝑥C 𝐴 𝑀 𝑥 ↔ ∀𝑥C𝑦C (𝑥𝑦 → ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥)))))
25 dmdbr 32277 . . 3 ((𝐴C𝑥C ) → (𝐴 𝑀* 𝑥 ↔ ∀𝑦C (𝑥𝑦 → ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥)))))
2625ralbidva 3153 . 2 (𝐴C → (∀𝑥C 𝐴 𝑀* 𝑥 ↔ ∀𝑥C𝑦C (𝑥𝑦 → ((𝑦𝐴) ∨ 𝑥) = (𝑦 ∩ (𝐴 𝑥)))))
2724, 26bitr4d 282 1 (𝐴C → (∀𝑥C 𝐴 𝑀 𝑥 ↔ ∀𝑥C 𝐴 𝑀* 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  cin 3901  wss 3902   class class class wbr 5091  (class class class)co 7346   C cch 30907   chj 30911   𝑀 cmd 30944   𝑀* cdmd 30945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-1cn 11064  ax-addcl 11066  ax-hilex 30977  ax-hfvadd 30978  ax-hv0cl 30981  ax-hfvmul 30983
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-map 8752  df-nn 12126  df-hlim 30950  df-sh 31185  df-ch 31199  df-chj 31288  df-md 32258  df-dmd 32259
This theorem is referenced by:  atmd  32377
  Copyright terms: Public domain W3C validator