HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  dmdmd Structured version   Visualization version   GIF version

Theorem dmdmd 32320
Description: The dual modular pair property expressed in terms of the modular pair property, that hold in Hilbert lattices. Remark 29.6 of [MaedaMaeda] p. 130. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
dmdmd ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ (⊥‘𝐴) 𝑀 (⊥‘𝐵)))

Proof of Theorem dmdmd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 4008 . . . . . . 7 (𝑦 = (⊥‘𝑥) → (𝑦 ⊆ (⊥‘𝐵) ↔ (⊥‘𝑥) ⊆ (⊥‘𝐵)))
2 oveq1 7439 . . . . . . . . 9 (𝑦 = (⊥‘𝑥) → (𝑦 (⊥‘𝐴)) = ((⊥‘𝑥) ∨ (⊥‘𝐴)))
32ineq1d 4218 . . . . . . . 8 (𝑦 = (⊥‘𝑥) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)))
4 oveq1 7439 . . . . . . . 8 (𝑦 = (⊥‘𝑥) → (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))
53, 4eqeq12d 2752 . . . . . . 7 (𝑦 = (⊥‘𝑥) → (((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))) ↔ (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵)))))
61, 5imbi12d 344 . . . . . 6 (𝑦 = (⊥‘𝑥) → ((𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))) ↔ ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
76rspccv 3618 . . . . 5 (∀𝑦C (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))) → ((⊥‘𝑥) ∈ C → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
8 choccl 31326 . . . . . . . . . . 11 (𝑥C → (⊥‘𝑥) ∈ C )
98imim1i 63 . . . . . . . . . 10 (((⊥‘𝑥) ∈ C → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))) → (𝑥C → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
109com12 32 . . . . . . . . 9 (𝑥C → (((⊥‘𝑥) ∈ C → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))) → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
1110adantl 481 . . . . . . . 8 (((𝐴C𝐵C ) ∧ 𝑥C ) → (((⊥‘𝑥) ∈ C → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))) → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
12 chsscon3 31520 . . . . . . . . . . 11 ((𝐵C𝑥C ) → (𝐵𝑥 ↔ (⊥‘𝑥) ⊆ (⊥‘𝐵)))
1312biimpd 229 . . . . . . . . . 10 ((𝐵C𝑥C ) → (𝐵𝑥 → (⊥‘𝑥) ⊆ (⊥‘𝐵)))
1413adantll 714 . . . . . . . . 9 (((𝐴C𝐵C ) ∧ 𝑥C ) → (𝐵𝑥 → (⊥‘𝑥) ⊆ (⊥‘𝐵)))
15 fveq2 6905 . . . . . . . . . 10 ((((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))) → (⊥‘(((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵))) = (⊥‘((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵)))))
16 choccl 31326 . . . . . . . . . . . . . . . 16 (𝐴C → (⊥‘𝐴) ∈ C )
17 chjcl 31377 . . . . . . . . . . . . . . . 16 (((⊥‘𝑥) ∈ C ∧ (⊥‘𝐴) ∈ C ) → ((⊥‘𝑥) ∨ (⊥‘𝐴)) ∈ C )
188, 16, 17syl2an 596 . . . . . . . . . . . . . . 15 ((𝑥C𝐴C ) → ((⊥‘𝑥) ∨ (⊥‘𝐴)) ∈ C )
19 chdmm3 31547 . . . . . . . . . . . . . . 15 ((((⊥‘𝑥) ∨ (⊥‘𝐴)) ∈ C𝐵C ) → (⊥‘(((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵))) = ((⊥‘((⊥‘𝑥) ∨ (⊥‘𝐴))) ∨ 𝐵))
2018, 19sylan 580 . . . . . . . . . . . . . 14 (((𝑥C𝐴C ) ∧ 𝐵C ) → (⊥‘(((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵))) = ((⊥‘((⊥‘𝑥) ∨ (⊥‘𝐴))) ∨ 𝐵))
21 chdmj4 31552 . . . . . . . . . . . . . . . 16 ((𝑥C𝐴C ) → (⊥‘((⊥‘𝑥) ∨ (⊥‘𝐴))) = (𝑥𝐴))
2221adantr 480 . . . . . . . . . . . . . . 15 (((𝑥C𝐴C ) ∧ 𝐵C ) → (⊥‘((⊥‘𝑥) ∨ (⊥‘𝐴))) = (𝑥𝐴))
2322oveq1d 7447 . . . . . . . . . . . . . 14 (((𝑥C𝐴C ) ∧ 𝐵C ) → ((⊥‘((⊥‘𝑥) ∨ (⊥‘𝐴))) ∨ 𝐵) = ((𝑥𝐴) ∨ 𝐵))
2420, 23eqtrd 2776 . . . . . . . . . . . . 13 (((𝑥C𝐴C ) ∧ 𝐵C ) → (⊥‘(((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵))) = ((𝑥𝐴) ∨ 𝐵))
2524anasss 466 . . . . . . . . . . . 12 ((𝑥C ∧ (𝐴C𝐵C )) → (⊥‘(((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵))) = ((𝑥𝐴) ∨ 𝐵))
26 choccl 31326 . . . . . . . . . . . . . . 15 (𝐵C → (⊥‘𝐵) ∈ C )
27 chincl 31519 . . . . . . . . . . . . . . 15 (((⊥‘𝐴) ∈ C ∧ (⊥‘𝐵) ∈ C ) → ((⊥‘𝐴) ∩ (⊥‘𝐵)) ∈ C )
2816, 26, 27syl2an 596 . . . . . . . . . . . . . 14 ((𝐴C𝐵C ) → ((⊥‘𝐴) ∩ (⊥‘𝐵)) ∈ C )
29 chdmj2 31550 . . . . . . . . . . . . . 14 ((𝑥C ∧ ((⊥‘𝐴) ∩ (⊥‘𝐵)) ∈ C ) → (⊥‘((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵)))) = (𝑥 ∩ (⊥‘((⊥‘𝐴) ∩ (⊥‘𝐵)))))
3028, 29sylan2 593 . . . . . . . . . . . . 13 ((𝑥C ∧ (𝐴C𝐵C )) → (⊥‘((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵)))) = (𝑥 ∩ (⊥‘((⊥‘𝐴) ∩ (⊥‘𝐵)))))
31 chdmm4 31548 . . . . . . . . . . . . . . 15 ((𝐴C𝐵C ) → (⊥‘((⊥‘𝐴) ∩ (⊥‘𝐵))) = (𝐴 𝐵))
3231adantl 481 . . . . . . . . . . . . . 14 ((𝑥C ∧ (𝐴C𝐵C )) → (⊥‘((⊥‘𝐴) ∩ (⊥‘𝐵))) = (𝐴 𝐵))
3332ineq2d 4219 . . . . . . . . . . . . 13 ((𝑥C ∧ (𝐴C𝐵C )) → (𝑥 ∩ (⊥‘((⊥‘𝐴) ∩ (⊥‘𝐵)))) = (𝑥 ∩ (𝐴 𝐵)))
3430, 33eqtrd 2776 . . . . . . . . . . . 12 ((𝑥C ∧ (𝐴C𝐵C )) → (⊥‘((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵)))) = (𝑥 ∩ (𝐴 𝐵)))
3525, 34eqeq12d 2752 . . . . . . . . . . 11 ((𝑥C ∧ (𝐴C𝐵C )) → ((⊥‘(((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵))) = (⊥‘((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵)))) ↔ ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))))
3635ancoms 458 . . . . . . . . . 10 (((𝐴C𝐵C ) ∧ 𝑥C ) → ((⊥‘(((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵))) = (⊥‘((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵)))) ↔ ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))))
3715, 36imbitrid 244 . . . . . . . . 9 (((𝐴C𝐵C ) ∧ 𝑥C ) → ((((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))) → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))))
3814, 37imim12d 81 . . . . . . . 8 (((𝐴C𝐵C ) ∧ 𝑥C ) → (((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵)))) → (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
3911, 38syld 47 . . . . . . 7 (((𝐴C𝐵C ) ∧ 𝑥C ) → (((⊥‘𝑥) ∈ C → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))) → (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
4039ex 412 . . . . . 6 ((𝐴C𝐵C ) → (𝑥C → (((⊥‘𝑥) ∈ C → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))) → (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))))))
4140com23 86 . . . . 5 ((𝐴C𝐵C ) → (((⊥‘𝑥) ∈ C → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))) → (𝑥C → (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))))))
427, 41syl5 34 . . . 4 ((𝐴C𝐵C ) → (∀𝑦C (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))) → (𝑥C → (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))))))
4342ralrimdv 3151 . . 3 ((𝐴C𝐵C ) → (∀𝑦C (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))) → ∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
44 sseq2 4009 . . . . . . 7 (𝑥 = (⊥‘𝑦) → (𝐵𝑥𝐵 ⊆ (⊥‘𝑦)))
45 ineq1 4212 . . . . . . . . 9 (𝑥 = (⊥‘𝑦) → (𝑥𝐴) = ((⊥‘𝑦) ∩ 𝐴))
4645oveq1d 7447 . . . . . . . 8 (𝑥 = (⊥‘𝑦) → ((𝑥𝐴) ∨ 𝐵) = (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵))
47 ineq1 4212 . . . . . . . 8 (𝑥 = (⊥‘𝑦) → (𝑥 ∩ (𝐴 𝐵)) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))
4846, 47eqeq12d 2752 . . . . . . 7 (𝑥 = (⊥‘𝑦) → (((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)) ↔ (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵))))
4944, 48imbi12d 344 . . . . . 6 (𝑥 = (⊥‘𝑦) → ((𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))) ↔ (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))))
5049rspccv 3618 . . . . 5 (∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))) → ((⊥‘𝑦) ∈ C → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))))
51 choccl 31326 . . . . . . . . . . 11 (𝑦C → (⊥‘𝑦) ∈ C )
5251imim1i 63 . . . . . . . . . 10 (((⊥‘𝑦) ∈ C → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))) → (𝑦C → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))))
5352com12 32 . . . . . . . . 9 (𝑦C → (((⊥‘𝑦) ∈ C → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))) → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))))
5453adantl 481 . . . . . . . 8 (((𝐴C𝐵C ) ∧ 𝑦C ) → (((⊥‘𝑦) ∈ C → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))) → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))))
55 chsscon2 31522 . . . . . . . . . . 11 ((𝐵C𝑦C ) → (𝐵 ⊆ (⊥‘𝑦) ↔ 𝑦 ⊆ (⊥‘𝐵)))
5655biimprd 248 . . . . . . . . . 10 ((𝐵C𝑦C ) → (𝑦 ⊆ (⊥‘𝐵) → 𝐵 ⊆ (⊥‘𝑦)))
5756adantll 714 . . . . . . . . 9 (((𝐴C𝐵C ) ∧ 𝑦C ) → (𝑦 ⊆ (⊥‘𝐵) → 𝐵 ⊆ (⊥‘𝑦)))
58 fveq2 6905 . . . . . . . . . 10 ((((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)) → (⊥‘(((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵)) = (⊥‘((⊥‘𝑦) ∩ (𝐴 𝐵))))
59 chincl 31519 . . . . . . . . . . . . . . . 16 (((⊥‘𝑦) ∈ C𝐴C ) → ((⊥‘𝑦) ∩ 𝐴) ∈ C )
6051, 59sylan 580 . . . . . . . . . . . . . . 15 ((𝑦C𝐴C ) → ((⊥‘𝑦) ∩ 𝐴) ∈ C )
61 chdmj1 31549 . . . . . . . . . . . . . . 15 ((((⊥‘𝑦) ∩ 𝐴) ∈ C𝐵C ) → (⊥‘(((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵)) = ((⊥‘((⊥‘𝑦) ∩ 𝐴)) ∩ (⊥‘𝐵)))
6260, 61sylan 580 . . . . . . . . . . . . . 14 (((𝑦C𝐴C ) ∧ 𝐵C ) → (⊥‘(((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵)) = ((⊥‘((⊥‘𝑦) ∩ 𝐴)) ∩ (⊥‘𝐵)))
63 chdmm2 31546 . . . . . . . . . . . . . . . 16 ((𝑦C𝐴C ) → (⊥‘((⊥‘𝑦) ∩ 𝐴)) = (𝑦 (⊥‘𝐴)))
6463adantr 480 . . . . . . . . . . . . . . 15 (((𝑦C𝐴C ) ∧ 𝐵C ) → (⊥‘((⊥‘𝑦) ∩ 𝐴)) = (𝑦 (⊥‘𝐴)))
6564ineq1d 4218 . . . . . . . . . . . . . 14 (((𝑦C𝐴C ) ∧ 𝐵C ) → ((⊥‘((⊥‘𝑦) ∩ 𝐴)) ∩ (⊥‘𝐵)) = ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)))
6662, 65eqtrd 2776 . . . . . . . . . . . . 13 (((𝑦C𝐴C ) ∧ 𝐵C ) → (⊥‘(((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵)) = ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)))
6766anasss 466 . . . . . . . . . . . 12 ((𝑦C ∧ (𝐴C𝐵C )) → (⊥‘(((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵)) = ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)))
68 chjcl 31377 . . . . . . . . . . . . . 14 ((𝐴C𝐵C ) → (𝐴 𝐵) ∈ C )
69 chdmm2 31546 . . . . . . . . . . . . . 14 ((𝑦C ∧ (𝐴 𝐵) ∈ C ) → (⊥‘((⊥‘𝑦) ∩ (𝐴 𝐵))) = (𝑦 (⊥‘(𝐴 𝐵))))
7068, 69sylan2 593 . . . . . . . . . . . . 13 ((𝑦C ∧ (𝐴C𝐵C )) → (⊥‘((⊥‘𝑦) ∩ (𝐴 𝐵))) = (𝑦 (⊥‘(𝐴 𝐵))))
71 chdmj1 31549 . . . . . . . . . . . . . . 15 ((𝐴C𝐵C ) → (⊥‘(𝐴 𝐵)) = ((⊥‘𝐴) ∩ (⊥‘𝐵)))
7271adantl 481 . . . . . . . . . . . . . 14 ((𝑦C ∧ (𝐴C𝐵C )) → (⊥‘(𝐴 𝐵)) = ((⊥‘𝐴) ∩ (⊥‘𝐵)))
7372oveq2d 7448 . . . . . . . . . . . . 13 ((𝑦C ∧ (𝐴C𝐵C )) → (𝑦 (⊥‘(𝐴 𝐵))) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))))
7470, 73eqtrd 2776 . . . . . . . . . . . 12 ((𝑦C ∧ (𝐴C𝐵C )) → (⊥‘((⊥‘𝑦) ∩ (𝐴 𝐵))) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))))
7567, 74eqeq12d 2752 . . . . . . . . . . 11 ((𝑦C ∧ (𝐴C𝐵C )) → ((⊥‘(((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵)) = (⊥‘((⊥‘𝑦) ∩ (𝐴 𝐵))) ↔ ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))))
7675ancoms 458 . . . . . . . . . 10 (((𝐴C𝐵C ) ∧ 𝑦C ) → ((⊥‘(((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵)) = (⊥‘((⊥‘𝑦) ∩ (𝐴 𝐵))) ↔ ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))))
7758, 76imbitrid 244 . . . . . . . . 9 (((𝐴C𝐵C ) ∧ 𝑦C ) → ((((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))))
7857, 77imim12d 81 . . . . . . . 8 (((𝐴C𝐵C ) ∧ 𝑦C ) → ((𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵))) → (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
7954, 78syld 47 . . . . . . 7 (((𝐴C𝐵C ) ∧ 𝑦C ) → (((⊥‘𝑦) ∈ C → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))) → (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
8079ex 412 . . . . . 6 ((𝐴C𝐵C ) → (𝑦C → (((⊥‘𝑦) ∈ C → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))) → (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))))))
8180com23 86 . . . . 5 ((𝐴C𝐵C ) → (((⊥‘𝑦) ∈ C → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))) → (𝑦C → (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))))))
8250, 81syl5 34 . . . 4 ((𝐴C𝐵C ) → (∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))) → (𝑦C → (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))))))
8382ralrimdv 3151 . . 3 ((𝐴C𝐵C ) → (∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))) → ∀𝑦C (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
8443, 83impbid 212 . 2 ((𝐴C𝐵C ) → (∀𝑦C (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))) ↔ ∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
85 mdbr 32314 . . 3 (((⊥‘𝐴) ∈ C ∧ (⊥‘𝐵) ∈ C ) → ((⊥‘𝐴) 𝑀 (⊥‘𝐵) ↔ ∀𝑦C (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
8616, 26, 85syl2an 596 . 2 ((𝐴C𝐵C ) → ((⊥‘𝐴) 𝑀 (⊥‘𝐵) ↔ ∀𝑦C (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
87 dmdbr 32319 . 2 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ ∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
8884, 86, 873bitr4rd 312 1 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ (⊥‘𝐴) 𝑀 (⊥‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3060  cin 3949  wss 3950   class class class wbr 5142  cfv 6560  (class class class)co 7432   C cch 30949  cort 30950   chj 30953   𝑀 cmd 30986   𝑀* cdmd 30987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cc 10476  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235  ax-mulf 11236  ax-hilex 31019  ax-hfvadd 31020  ax-hvcom 31021  ax-hvass 31022  ax-hv0cl 31023  ax-hvaddid 31024  ax-hfvmul 31025  ax-hvmulid 31026  ax-hvmulass 31027  ax-hvdistr1 31028  ax-hvdistr2 31029  ax-hvmul0 31030  ax-hfi 31099  ax-his1 31102  ax-his2 31103  ax-his3 31104  ax-his4 31105  ax-hcompl 31222
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-oadd 8511  df-omul 8512  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-fi 9452  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-acn 9983  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ioo 13392  df-ico 13394  df-icc 13395  df-fz 13549  df-fzo 13696  df-fl 13833  df-seq 14044  df-exp 14104  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-clim 15525  df-rlim 15526  df-sum 15724  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-mulg 19087  df-cntz 19336  df-cmn 19801  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-fbas 21362  df-fg 21363  df-cnfld 21366  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cld 23028  df-ntr 23029  df-cls 23030  df-nei 23107  df-cn 23236  df-cnp 23237  df-lm 23238  df-haus 23324  df-tx 23571  df-hmeo 23764  df-fil 23855  df-fm 23947  df-flim 23948  df-flf 23949  df-xms 24331  df-ms 24332  df-tms 24333  df-cfil 25290  df-cau 25291  df-cmet 25292  df-grpo 30513  df-gid 30514  df-ginv 30515  df-gdiv 30516  df-ablo 30565  df-vc 30579  df-nv 30612  df-va 30615  df-ba 30616  df-sm 30617  df-0v 30618  df-vs 30619  df-nmcv 30620  df-ims 30621  df-dip 30721  df-ssp 30742  df-ph 30833  df-cbn 30883  df-hnorm 30988  df-hba 30989  df-hvsub 30991  df-hlim 30992  df-hcau 30993  df-sh 31227  df-ch 31241  df-oc 31272  df-ch0 31273  df-shs 31328  df-chj 31330  df-md 32300  df-dmd 32301
This theorem is referenced by:  mddmd  32321  ssdmd1  32333  mdsldmd1i  32351  cvdmd  32357  dmdsym  32433  cmdmdi  32437
  Copyright terms: Public domain W3C validator