HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  dmdmd Structured version   Visualization version   GIF version

Theorem dmdmd 32227
Description: The dual modular pair property expressed in terms of the modular pair property, that hold in Hilbert lattices. Remark 29.6 of [MaedaMaeda] p. 130. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
dmdmd ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ (⊥‘𝐴) 𝑀 (⊥‘𝐵)))

Proof of Theorem dmdmd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3984 . . . . . . 7 (𝑦 = (⊥‘𝑥) → (𝑦 ⊆ (⊥‘𝐵) ↔ (⊥‘𝑥) ⊆ (⊥‘𝐵)))
2 oveq1 7410 . . . . . . . . 9 (𝑦 = (⊥‘𝑥) → (𝑦 (⊥‘𝐴)) = ((⊥‘𝑥) ∨ (⊥‘𝐴)))
32ineq1d 4194 . . . . . . . 8 (𝑦 = (⊥‘𝑥) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)))
4 oveq1 7410 . . . . . . . 8 (𝑦 = (⊥‘𝑥) → (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))
53, 4eqeq12d 2751 . . . . . . 7 (𝑦 = (⊥‘𝑥) → (((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))) ↔ (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵)))))
61, 5imbi12d 344 . . . . . 6 (𝑦 = (⊥‘𝑥) → ((𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))) ↔ ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
76rspccv 3598 . . . . 5 (∀𝑦C (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))) → ((⊥‘𝑥) ∈ C → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
8 choccl 31233 . . . . . . . . . . 11 (𝑥C → (⊥‘𝑥) ∈ C )
98imim1i 63 . . . . . . . . . 10 (((⊥‘𝑥) ∈ C → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))) → (𝑥C → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
109com12 32 . . . . . . . . 9 (𝑥C → (((⊥‘𝑥) ∈ C → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))) → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
1110adantl 481 . . . . . . . 8 (((𝐴C𝐵C ) ∧ 𝑥C ) → (((⊥‘𝑥) ∈ C → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))) → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
12 chsscon3 31427 . . . . . . . . . . 11 ((𝐵C𝑥C ) → (𝐵𝑥 ↔ (⊥‘𝑥) ⊆ (⊥‘𝐵)))
1312biimpd 229 . . . . . . . . . 10 ((𝐵C𝑥C ) → (𝐵𝑥 → (⊥‘𝑥) ⊆ (⊥‘𝐵)))
1413adantll 714 . . . . . . . . 9 (((𝐴C𝐵C ) ∧ 𝑥C ) → (𝐵𝑥 → (⊥‘𝑥) ⊆ (⊥‘𝐵)))
15 fveq2 6875 . . . . . . . . . 10 ((((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))) → (⊥‘(((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵))) = (⊥‘((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵)))))
16 choccl 31233 . . . . . . . . . . . . . . . 16 (𝐴C → (⊥‘𝐴) ∈ C )
17 chjcl 31284 . . . . . . . . . . . . . . . 16 (((⊥‘𝑥) ∈ C ∧ (⊥‘𝐴) ∈ C ) → ((⊥‘𝑥) ∨ (⊥‘𝐴)) ∈ C )
188, 16, 17syl2an 596 . . . . . . . . . . . . . . 15 ((𝑥C𝐴C ) → ((⊥‘𝑥) ∨ (⊥‘𝐴)) ∈ C )
19 chdmm3 31454 . . . . . . . . . . . . . . 15 ((((⊥‘𝑥) ∨ (⊥‘𝐴)) ∈ C𝐵C ) → (⊥‘(((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵))) = ((⊥‘((⊥‘𝑥) ∨ (⊥‘𝐴))) ∨ 𝐵))
2018, 19sylan 580 . . . . . . . . . . . . . 14 (((𝑥C𝐴C ) ∧ 𝐵C ) → (⊥‘(((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵))) = ((⊥‘((⊥‘𝑥) ∨ (⊥‘𝐴))) ∨ 𝐵))
21 chdmj4 31459 . . . . . . . . . . . . . . . 16 ((𝑥C𝐴C ) → (⊥‘((⊥‘𝑥) ∨ (⊥‘𝐴))) = (𝑥𝐴))
2221adantr 480 . . . . . . . . . . . . . . 15 (((𝑥C𝐴C ) ∧ 𝐵C ) → (⊥‘((⊥‘𝑥) ∨ (⊥‘𝐴))) = (𝑥𝐴))
2322oveq1d 7418 . . . . . . . . . . . . . 14 (((𝑥C𝐴C ) ∧ 𝐵C ) → ((⊥‘((⊥‘𝑥) ∨ (⊥‘𝐴))) ∨ 𝐵) = ((𝑥𝐴) ∨ 𝐵))
2420, 23eqtrd 2770 . . . . . . . . . . . . 13 (((𝑥C𝐴C ) ∧ 𝐵C ) → (⊥‘(((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵))) = ((𝑥𝐴) ∨ 𝐵))
2524anasss 466 . . . . . . . . . . . 12 ((𝑥C ∧ (𝐴C𝐵C )) → (⊥‘(((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵))) = ((𝑥𝐴) ∨ 𝐵))
26 choccl 31233 . . . . . . . . . . . . . . 15 (𝐵C → (⊥‘𝐵) ∈ C )
27 chincl 31426 . . . . . . . . . . . . . . 15 (((⊥‘𝐴) ∈ C ∧ (⊥‘𝐵) ∈ C ) → ((⊥‘𝐴) ∩ (⊥‘𝐵)) ∈ C )
2816, 26, 27syl2an 596 . . . . . . . . . . . . . 14 ((𝐴C𝐵C ) → ((⊥‘𝐴) ∩ (⊥‘𝐵)) ∈ C )
29 chdmj2 31457 . . . . . . . . . . . . . 14 ((𝑥C ∧ ((⊥‘𝐴) ∩ (⊥‘𝐵)) ∈ C ) → (⊥‘((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵)))) = (𝑥 ∩ (⊥‘((⊥‘𝐴) ∩ (⊥‘𝐵)))))
3028, 29sylan2 593 . . . . . . . . . . . . 13 ((𝑥C ∧ (𝐴C𝐵C )) → (⊥‘((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵)))) = (𝑥 ∩ (⊥‘((⊥‘𝐴) ∩ (⊥‘𝐵)))))
31 chdmm4 31455 . . . . . . . . . . . . . . 15 ((𝐴C𝐵C ) → (⊥‘((⊥‘𝐴) ∩ (⊥‘𝐵))) = (𝐴 𝐵))
3231adantl 481 . . . . . . . . . . . . . 14 ((𝑥C ∧ (𝐴C𝐵C )) → (⊥‘((⊥‘𝐴) ∩ (⊥‘𝐵))) = (𝐴 𝐵))
3332ineq2d 4195 . . . . . . . . . . . . 13 ((𝑥C ∧ (𝐴C𝐵C )) → (𝑥 ∩ (⊥‘((⊥‘𝐴) ∩ (⊥‘𝐵)))) = (𝑥 ∩ (𝐴 𝐵)))
3430, 33eqtrd 2770 . . . . . . . . . . . 12 ((𝑥C ∧ (𝐴C𝐵C )) → (⊥‘((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵)))) = (𝑥 ∩ (𝐴 𝐵)))
3525, 34eqeq12d 2751 . . . . . . . . . . 11 ((𝑥C ∧ (𝐴C𝐵C )) → ((⊥‘(((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵))) = (⊥‘((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵)))) ↔ ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))))
3635ancoms 458 . . . . . . . . . 10 (((𝐴C𝐵C ) ∧ 𝑥C ) → ((⊥‘(((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵))) = (⊥‘((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵)))) ↔ ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))))
3715, 36imbitrid 244 . . . . . . . . 9 (((𝐴C𝐵C ) ∧ 𝑥C ) → ((((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))) → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))))
3814, 37imim12d 81 . . . . . . . 8 (((𝐴C𝐵C ) ∧ 𝑥C ) → (((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵)))) → (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
3911, 38syld 47 . . . . . . 7 (((𝐴C𝐵C ) ∧ 𝑥C ) → (((⊥‘𝑥) ∈ C → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))) → (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
4039ex 412 . . . . . 6 ((𝐴C𝐵C ) → (𝑥C → (((⊥‘𝑥) ∈ C → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))) → (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))))))
4140com23 86 . . . . 5 ((𝐴C𝐵C ) → (((⊥‘𝑥) ∈ C → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))) → (𝑥C → (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))))))
427, 41syl5 34 . . . 4 ((𝐴C𝐵C ) → (∀𝑦C (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))) → (𝑥C → (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))))))
4342ralrimdv 3138 . . 3 ((𝐴C𝐵C ) → (∀𝑦C (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))) → ∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
44 sseq2 3985 . . . . . . 7 (𝑥 = (⊥‘𝑦) → (𝐵𝑥𝐵 ⊆ (⊥‘𝑦)))
45 ineq1 4188 . . . . . . . . 9 (𝑥 = (⊥‘𝑦) → (𝑥𝐴) = ((⊥‘𝑦) ∩ 𝐴))
4645oveq1d 7418 . . . . . . . 8 (𝑥 = (⊥‘𝑦) → ((𝑥𝐴) ∨ 𝐵) = (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵))
47 ineq1 4188 . . . . . . . 8 (𝑥 = (⊥‘𝑦) → (𝑥 ∩ (𝐴 𝐵)) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))
4846, 47eqeq12d 2751 . . . . . . 7 (𝑥 = (⊥‘𝑦) → (((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)) ↔ (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵))))
4944, 48imbi12d 344 . . . . . 6 (𝑥 = (⊥‘𝑦) → ((𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))) ↔ (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))))
5049rspccv 3598 . . . . 5 (∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))) → ((⊥‘𝑦) ∈ C → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))))
51 choccl 31233 . . . . . . . . . . 11 (𝑦C → (⊥‘𝑦) ∈ C )
5251imim1i 63 . . . . . . . . . 10 (((⊥‘𝑦) ∈ C → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))) → (𝑦C → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))))
5352com12 32 . . . . . . . . 9 (𝑦C → (((⊥‘𝑦) ∈ C → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))) → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))))
5453adantl 481 . . . . . . . 8 (((𝐴C𝐵C ) ∧ 𝑦C ) → (((⊥‘𝑦) ∈ C → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))) → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))))
55 chsscon2 31429 . . . . . . . . . . 11 ((𝐵C𝑦C ) → (𝐵 ⊆ (⊥‘𝑦) ↔ 𝑦 ⊆ (⊥‘𝐵)))
5655biimprd 248 . . . . . . . . . 10 ((𝐵C𝑦C ) → (𝑦 ⊆ (⊥‘𝐵) → 𝐵 ⊆ (⊥‘𝑦)))
5756adantll 714 . . . . . . . . 9 (((𝐴C𝐵C ) ∧ 𝑦C ) → (𝑦 ⊆ (⊥‘𝐵) → 𝐵 ⊆ (⊥‘𝑦)))
58 fveq2 6875 . . . . . . . . . 10 ((((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)) → (⊥‘(((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵)) = (⊥‘((⊥‘𝑦) ∩ (𝐴 𝐵))))
59 chincl 31426 . . . . . . . . . . . . . . . 16 (((⊥‘𝑦) ∈ C𝐴C ) → ((⊥‘𝑦) ∩ 𝐴) ∈ C )
6051, 59sylan 580 . . . . . . . . . . . . . . 15 ((𝑦C𝐴C ) → ((⊥‘𝑦) ∩ 𝐴) ∈ C )
61 chdmj1 31456 . . . . . . . . . . . . . . 15 ((((⊥‘𝑦) ∩ 𝐴) ∈ C𝐵C ) → (⊥‘(((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵)) = ((⊥‘((⊥‘𝑦) ∩ 𝐴)) ∩ (⊥‘𝐵)))
6260, 61sylan 580 . . . . . . . . . . . . . 14 (((𝑦C𝐴C ) ∧ 𝐵C ) → (⊥‘(((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵)) = ((⊥‘((⊥‘𝑦) ∩ 𝐴)) ∩ (⊥‘𝐵)))
63 chdmm2 31453 . . . . . . . . . . . . . . . 16 ((𝑦C𝐴C ) → (⊥‘((⊥‘𝑦) ∩ 𝐴)) = (𝑦 (⊥‘𝐴)))
6463adantr 480 . . . . . . . . . . . . . . 15 (((𝑦C𝐴C ) ∧ 𝐵C ) → (⊥‘((⊥‘𝑦) ∩ 𝐴)) = (𝑦 (⊥‘𝐴)))
6564ineq1d 4194 . . . . . . . . . . . . . 14 (((𝑦C𝐴C ) ∧ 𝐵C ) → ((⊥‘((⊥‘𝑦) ∩ 𝐴)) ∩ (⊥‘𝐵)) = ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)))
6662, 65eqtrd 2770 . . . . . . . . . . . . 13 (((𝑦C𝐴C ) ∧ 𝐵C ) → (⊥‘(((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵)) = ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)))
6766anasss 466 . . . . . . . . . . . 12 ((𝑦C ∧ (𝐴C𝐵C )) → (⊥‘(((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵)) = ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)))
68 chjcl 31284 . . . . . . . . . . . . . 14 ((𝐴C𝐵C ) → (𝐴 𝐵) ∈ C )
69 chdmm2 31453 . . . . . . . . . . . . . 14 ((𝑦C ∧ (𝐴 𝐵) ∈ C ) → (⊥‘((⊥‘𝑦) ∩ (𝐴 𝐵))) = (𝑦 (⊥‘(𝐴 𝐵))))
7068, 69sylan2 593 . . . . . . . . . . . . 13 ((𝑦C ∧ (𝐴C𝐵C )) → (⊥‘((⊥‘𝑦) ∩ (𝐴 𝐵))) = (𝑦 (⊥‘(𝐴 𝐵))))
71 chdmj1 31456 . . . . . . . . . . . . . . 15 ((𝐴C𝐵C ) → (⊥‘(𝐴 𝐵)) = ((⊥‘𝐴) ∩ (⊥‘𝐵)))
7271adantl 481 . . . . . . . . . . . . . 14 ((𝑦C ∧ (𝐴C𝐵C )) → (⊥‘(𝐴 𝐵)) = ((⊥‘𝐴) ∩ (⊥‘𝐵)))
7372oveq2d 7419 . . . . . . . . . . . . 13 ((𝑦C ∧ (𝐴C𝐵C )) → (𝑦 (⊥‘(𝐴 𝐵))) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))))
7470, 73eqtrd 2770 . . . . . . . . . . . 12 ((𝑦C ∧ (𝐴C𝐵C )) → (⊥‘((⊥‘𝑦) ∩ (𝐴 𝐵))) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))))
7567, 74eqeq12d 2751 . . . . . . . . . . 11 ((𝑦C ∧ (𝐴C𝐵C )) → ((⊥‘(((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵)) = (⊥‘((⊥‘𝑦) ∩ (𝐴 𝐵))) ↔ ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))))
7675ancoms 458 . . . . . . . . . 10 (((𝐴C𝐵C ) ∧ 𝑦C ) → ((⊥‘(((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵)) = (⊥‘((⊥‘𝑦) ∩ (𝐴 𝐵))) ↔ ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))))
7758, 76imbitrid 244 . . . . . . . . 9 (((𝐴C𝐵C ) ∧ 𝑦C ) → ((((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))))
7857, 77imim12d 81 . . . . . . . 8 (((𝐴C𝐵C ) ∧ 𝑦C ) → ((𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵))) → (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
7954, 78syld 47 . . . . . . 7 (((𝐴C𝐵C ) ∧ 𝑦C ) → (((⊥‘𝑦) ∈ C → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))) → (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
8079ex 412 . . . . . 6 ((𝐴C𝐵C ) → (𝑦C → (((⊥‘𝑦) ∈ C → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))) → (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))))))
8180com23 86 . . . . 5 ((𝐴C𝐵C ) → (((⊥‘𝑦) ∈ C → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))) → (𝑦C → (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))))))
8250, 81syl5 34 . . . 4 ((𝐴C𝐵C ) → (∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))) → (𝑦C → (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))))))
8382ralrimdv 3138 . . 3 ((𝐴C𝐵C ) → (∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))) → ∀𝑦C (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
8443, 83impbid 212 . 2 ((𝐴C𝐵C ) → (∀𝑦C (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))) ↔ ∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
85 mdbr 32221 . . 3 (((⊥‘𝐴) ∈ C ∧ (⊥‘𝐵) ∈ C ) → ((⊥‘𝐴) 𝑀 (⊥‘𝐵) ↔ ∀𝑦C (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
8616, 26, 85syl2an 596 . 2 ((𝐴C𝐵C ) → ((⊥‘𝐴) 𝑀 (⊥‘𝐵) ↔ ∀𝑦C (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
87 dmdbr 32226 . 2 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ ∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
8884, 86, 873bitr4rd 312 1 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ (⊥‘𝐴) 𝑀 (⊥‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  cin 3925  wss 3926   class class class wbr 5119  cfv 6530  (class class class)co 7403   C cch 30856  cort 30857   chj 30860   𝑀 cmd 30893   𝑀* cdmd 30894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cc 10447  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206  ax-mulf 11207  ax-hilex 30926  ax-hfvadd 30927  ax-hvcom 30928  ax-hvass 30929  ax-hv0cl 30930  ax-hvaddid 30931  ax-hfvmul 30932  ax-hvmulid 30933  ax-hvmulass 30934  ax-hvdistr1 30935  ax-hvdistr2 30936  ax-hvmul0 30937  ax-hfi 31006  ax-his1 31009  ax-his2 31010  ax-his3 31011  ax-his4 31012  ax-hcompl 31129
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-omul 8483  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-fi 9421  df-sup 9452  df-inf 9453  df-oi 9522  df-card 9951  df-acn 9954  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ioo 13364  df-ico 13366  df-icc 13367  df-fz 13523  df-fzo 13670  df-fl 13807  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-clim 15502  df-rlim 15503  df-sum 15701  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-rest 17434  df-topn 17435  df-0g 17453  df-gsum 17454  df-topgen 17455  df-pt 17456  df-prds 17459  df-xrs 17514  df-qtop 17519  df-imas 17520  df-xps 17522  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-submnd 18760  df-mulg 19049  df-cntz 19298  df-cmn 19761  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-fbas 21310  df-fg 21311  df-cnfld 21314  df-top 22830  df-topon 22847  df-topsp 22869  df-bases 22882  df-cld 22955  df-ntr 22956  df-cls 22957  df-nei 23034  df-cn 23163  df-cnp 23164  df-lm 23165  df-haus 23251  df-tx 23498  df-hmeo 23691  df-fil 23782  df-fm 23874  df-flim 23875  df-flf 23876  df-xms 24257  df-ms 24258  df-tms 24259  df-cfil 25205  df-cau 25206  df-cmet 25207  df-grpo 30420  df-gid 30421  df-ginv 30422  df-gdiv 30423  df-ablo 30472  df-vc 30486  df-nv 30519  df-va 30522  df-ba 30523  df-sm 30524  df-0v 30525  df-vs 30526  df-nmcv 30527  df-ims 30528  df-dip 30628  df-ssp 30649  df-ph 30740  df-cbn 30790  df-hnorm 30895  df-hba 30896  df-hvsub 30898  df-hlim 30899  df-hcau 30900  df-sh 31134  df-ch 31148  df-oc 31179  df-ch0 31180  df-shs 31235  df-chj 31237  df-md 32207  df-dmd 32208
This theorem is referenced by:  mddmd  32228  ssdmd1  32240  mdsldmd1i  32258  cvdmd  32264  dmdsym  32340  cmdmdi  32344
  Copyright terms: Public domain W3C validator