HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  dmdmd Structured version   Visualization version   GIF version

Theorem dmdmd 32262
Description: The dual modular pair property expressed in terms of the modular pair property, that hold in Hilbert lattices. Remark 29.6 of [MaedaMaeda] p. 130. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
dmdmd ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ (⊥‘𝐴) 𝑀 (⊥‘𝐵)))

Proof of Theorem dmdmd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3963 . . . . . . 7 (𝑦 = (⊥‘𝑥) → (𝑦 ⊆ (⊥‘𝐵) ↔ (⊥‘𝑥) ⊆ (⊥‘𝐵)))
2 oveq1 7360 . . . . . . . . 9 (𝑦 = (⊥‘𝑥) → (𝑦 (⊥‘𝐴)) = ((⊥‘𝑥) ∨ (⊥‘𝐴)))
32ineq1d 4172 . . . . . . . 8 (𝑦 = (⊥‘𝑥) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)))
4 oveq1 7360 . . . . . . . 8 (𝑦 = (⊥‘𝑥) → (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))
53, 4eqeq12d 2745 . . . . . . 7 (𝑦 = (⊥‘𝑥) → (((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))) ↔ (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵)))))
61, 5imbi12d 344 . . . . . 6 (𝑦 = (⊥‘𝑥) → ((𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))) ↔ ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
76rspccv 3576 . . . . 5 (∀𝑦C (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))) → ((⊥‘𝑥) ∈ C → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
8 choccl 31268 . . . . . . . . . . 11 (𝑥C → (⊥‘𝑥) ∈ C )
98imim1i 63 . . . . . . . . . 10 (((⊥‘𝑥) ∈ C → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))) → (𝑥C → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
109com12 32 . . . . . . . . 9 (𝑥C → (((⊥‘𝑥) ∈ C → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))) → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
1110adantl 481 . . . . . . . 8 (((𝐴C𝐵C ) ∧ 𝑥C ) → (((⊥‘𝑥) ∈ C → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))) → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
12 chsscon3 31462 . . . . . . . . . . 11 ((𝐵C𝑥C ) → (𝐵𝑥 ↔ (⊥‘𝑥) ⊆ (⊥‘𝐵)))
1312biimpd 229 . . . . . . . . . 10 ((𝐵C𝑥C ) → (𝐵𝑥 → (⊥‘𝑥) ⊆ (⊥‘𝐵)))
1413adantll 714 . . . . . . . . 9 (((𝐴C𝐵C ) ∧ 𝑥C ) → (𝐵𝑥 → (⊥‘𝑥) ⊆ (⊥‘𝐵)))
15 fveq2 6826 . . . . . . . . . 10 ((((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))) → (⊥‘(((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵))) = (⊥‘((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵)))))
16 choccl 31268 . . . . . . . . . . . . . . . 16 (𝐴C → (⊥‘𝐴) ∈ C )
17 chjcl 31319 . . . . . . . . . . . . . . . 16 (((⊥‘𝑥) ∈ C ∧ (⊥‘𝐴) ∈ C ) → ((⊥‘𝑥) ∨ (⊥‘𝐴)) ∈ C )
188, 16, 17syl2an 596 . . . . . . . . . . . . . . 15 ((𝑥C𝐴C ) → ((⊥‘𝑥) ∨ (⊥‘𝐴)) ∈ C )
19 chdmm3 31489 . . . . . . . . . . . . . . 15 ((((⊥‘𝑥) ∨ (⊥‘𝐴)) ∈ C𝐵C ) → (⊥‘(((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵))) = ((⊥‘((⊥‘𝑥) ∨ (⊥‘𝐴))) ∨ 𝐵))
2018, 19sylan 580 . . . . . . . . . . . . . 14 (((𝑥C𝐴C ) ∧ 𝐵C ) → (⊥‘(((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵))) = ((⊥‘((⊥‘𝑥) ∨ (⊥‘𝐴))) ∨ 𝐵))
21 chdmj4 31494 . . . . . . . . . . . . . . . 16 ((𝑥C𝐴C ) → (⊥‘((⊥‘𝑥) ∨ (⊥‘𝐴))) = (𝑥𝐴))
2221adantr 480 . . . . . . . . . . . . . . 15 (((𝑥C𝐴C ) ∧ 𝐵C ) → (⊥‘((⊥‘𝑥) ∨ (⊥‘𝐴))) = (𝑥𝐴))
2322oveq1d 7368 . . . . . . . . . . . . . 14 (((𝑥C𝐴C ) ∧ 𝐵C ) → ((⊥‘((⊥‘𝑥) ∨ (⊥‘𝐴))) ∨ 𝐵) = ((𝑥𝐴) ∨ 𝐵))
2420, 23eqtrd 2764 . . . . . . . . . . . . 13 (((𝑥C𝐴C ) ∧ 𝐵C ) → (⊥‘(((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵))) = ((𝑥𝐴) ∨ 𝐵))
2524anasss 466 . . . . . . . . . . . 12 ((𝑥C ∧ (𝐴C𝐵C )) → (⊥‘(((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵))) = ((𝑥𝐴) ∨ 𝐵))
26 choccl 31268 . . . . . . . . . . . . . . 15 (𝐵C → (⊥‘𝐵) ∈ C )
27 chincl 31461 . . . . . . . . . . . . . . 15 (((⊥‘𝐴) ∈ C ∧ (⊥‘𝐵) ∈ C ) → ((⊥‘𝐴) ∩ (⊥‘𝐵)) ∈ C )
2816, 26, 27syl2an 596 . . . . . . . . . . . . . 14 ((𝐴C𝐵C ) → ((⊥‘𝐴) ∩ (⊥‘𝐵)) ∈ C )
29 chdmj2 31492 . . . . . . . . . . . . . 14 ((𝑥C ∧ ((⊥‘𝐴) ∩ (⊥‘𝐵)) ∈ C ) → (⊥‘((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵)))) = (𝑥 ∩ (⊥‘((⊥‘𝐴) ∩ (⊥‘𝐵)))))
3028, 29sylan2 593 . . . . . . . . . . . . 13 ((𝑥C ∧ (𝐴C𝐵C )) → (⊥‘((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵)))) = (𝑥 ∩ (⊥‘((⊥‘𝐴) ∩ (⊥‘𝐵)))))
31 chdmm4 31490 . . . . . . . . . . . . . . 15 ((𝐴C𝐵C ) → (⊥‘((⊥‘𝐴) ∩ (⊥‘𝐵))) = (𝐴 𝐵))
3231adantl 481 . . . . . . . . . . . . . 14 ((𝑥C ∧ (𝐴C𝐵C )) → (⊥‘((⊥‘𝐴) ∩ (⊥‘𝐵))) = (𝐴 𝐵))
3332ineq2d 4173 . . . . . . . . . . . . 13 ((𝑥C ∧ (𝐴C𝐵C )) → (𝑥 ∩ (⊥‘((⊥‘𝐴) ∩ (⊥‘𝐵)))) = (𝑥 ∩ (𝐴 𝐵)))
3430, 33eqtrd 2764 . . . . . . . . . . . 12 ((𝑥C ∧ (𝐴C𝐵C )) → (⊥‘((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵)))) = (𝑥 ∩ (𝐴 𝐵)))
3525, 34eqeq12d 2745 . . . . . . . . . . 11 ((𝑥C ∧ (𝐴C𝐵C )) → ((⊥‘(((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵))) = (⊥‘((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵)))) ↔ ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))))
3635ancoms 458 . . . . . . . . . 10 (((𝐴C𝐵C ) ∧ 𝑥C ) → ((⊥‘(((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵))) = (⊥‘((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵)))) ↔ ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))))
3715, 36imbitrid 244 . . . . . . . . 9 (((𝐴C𝐵C ) ∧ 𝑥C ) → ((((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))) → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))))
3814, 37imim12d 81 . . . . . . . 8 (((𝐴C𝐵C ) ∧ 𝑥C ) → (((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵)))) → (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
3911, 38syld 47 . . . . . . 7 (((𝐴C𝐵C ) ∧ 𝑥C ) → (((⊥‘𝑥) ∈ C → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))) → (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
4039ex 412 . . . . . 6 ((𝐴C𝐵C ) → (𝑥C → (((⊥‘𝑥) ∈ C → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))) → (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))))))
4140com23 86 . . . . 5 ((𝐴C𝐵C ) → (((⊥‘𝑥) ∈ C → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))) → (𝑥C → (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))))))
427, 41syl5 34 . . . 4 ((𝐴C𝐵C ) → (∀𝑦C (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))) → (𝑥C → (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))))))
4342ralrimdv 3127 . . 3 ((𝐴C𝐵C ) → (∀𝑦C (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))) → ∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
44 sseq2 3964 . . . . . . 7 (𝑥 = (⊥‘𝑦) → (𝐵𝑥𝐵 ⊆ (⊥‘𝑦)))
45 ineq1 4166 . . . . . . . . 9 (𝑥 = (⊥‘𝑦) → (𝑥𝐴) = ((⊥‘𝑦) ∩ 𝐴))
4645oveq1d 7368 . . . . . . . 8 (𝑥 = (⊥‘𝑦) → ((𝑥𝐴) ∨ 𝐵) = (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵))
47 ineq1 4166 . . . . . . . 8 (𝑥 = (⊥‘𝑦) → (𝑥 ∩ (𝐴 𝐵)) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))
4846, 47eqeq12d 2745 . . . . . . 7 (𝑥 = (⊥‘𝑦) → (((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)) ↔ (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵))))
4944, 48imbi12d 344 . . . . . 6 (𝑥 = (⊥‘𝑦) → ((𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))) ↔ (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))))
5049rspccv 3576 . . . . 5 (∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))) → ((⊥‘𝑦) ∈ C → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))))
51 choccl 31268 . . . . . . . . . . 11 (𝑦C → (⊥‘𝑦) ∈ C )
5251imim1i 63 . . . . . . . . . 10 (((⊥‘𝑦) ∈ C → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))) → (𝑦C → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))))
5352com12 32 . . . . . . . . 9 (𝑦C → (((⊥‘𝑦) ∈ C → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))) → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))))
5453adantl 481 . . . . . . . 8 (((𝐴C𝐵C ) ∧ 𝑦C ) → (((⊥‘𝑦) ∈ C → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))) → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))))
55 chsscon2 31464 . . . . . . . . . . 11 ((𝐵C𝑦C ) → (𝐵 ⊆ (⊥‘𝑦) ↔ 𝑦 ⊆ (⊥‘𝐵)))
5655biimprd 248 . . . . . . . . . 10 ((𝐵C𝑦C ) → (𝑦 ⊆ (⊥‘𝐵) → 𝐵 ⊆ (⊥‘𝑦)))
5756adantll 714 . . . . . . . . 9 (((𝐴C𝐵C ) ∧ 𝑦C ) → (𝑦 ⊆ (⊥‘𝐵) → 𝐵 ⊆ (⊥‘𝑦)))
58 fveq2 6826 . . . . . . . . . 10 ((((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)) → (⊥‘(((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵)) = (⊥‘((⊥‘𝑦) ∩ (𝐴 𝐵))))
59 chincl 31461 . . . . . . . . . . . . . . . 16 (((⊥‘𝑦) ∈ C𝐴C ) → ((⊥‘𝑦) ∩ 𝐴) ∈ C )
6051, 59sylan 580 . . . . . . . . . . . . . . 15 ((𝑦C𝐴C ) → ((⊥‘𝑦) ∩ 𝐴) ∈ C )
61 chdmj1 31491 . . . . . . . . . . . . . . 15 ((((⊥‘𝑦) ∩ 𝐴) ∈ C𝐵C ) → (⊥‘(((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵)) = ((⊥‘((⊥‘𝑦) ∩ 𝐴)) ∩ (⊥‘𝐵)))
6260, 61sylan 580 . . . . . . . . . . . . . 14 (((𝑦C𝐴C ) ∧ 𝐵C ) → (⊥‘(((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵)) = ((⊥‘((⊥‘𝑦) ∩ 𝐴)) ∩ (⊥‘𝐵)))
63 chdmm2 31488 . . . . . . . . . . . . . . . 16 ((𝑦C𝐴C ) → (⊥‘((⊥‘𝑦) ∩ 𝐴)) = (𝑦 (⊥‘𝐴)))
6463adantr 480 . . . . . . . . . . . . . . 15 (((𝑦C𝐴C ) ∧ 𝐵C ) → (⊥‘((⊥‘𝑦) ∩ 𝐴)) = (𝑦 (⊥‘𝐴)))
6564ineq1d 4172 . . . . . . . . . . . . . 14 (((𝑦C𝐴C ) ∧ 𝐵C ) → ((⊥‘((⊥‘𝑦) ∩ 𝐴)) ∩ (⊥‘𝐵)) = ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)))
6662, 65eqtrd 2764 . . . . . . . . . . . . 13 (((𝑦C𝐴C ) ∧ 𝐵C ) → (⊥‘(((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵)) = ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)))
6766anasss 466 . . . . . . . . . . . 12 ((𝑦C ∧ (𝐴C𝐵C )) → (⊥‘(((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵)) = ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)))
68 chjcl 31319 . . . . . . . . . . . . . 14 ((𝐴C𝐵C ) → (𝐴 𝐵) ∈ C )
69 chdmm2 31488 . . . . . . . . . . . . . 14 ((𝑦C ∧ (𝐴 𝐵) ∈ C ) → (⊥‘((⊥‘𝑦) ∩ (𝐴 𝐵))) = (𝑦 (⊥‘(𝐴 𝐵))))
7068, 69sylan2 593 . . . . . . . . . . . . 13 ((𝑦C ∧ (𝐴C𝐵C )) → (⊥‘((⊥‘𝑦) ∩ (𝐴 𝐵))) = (𝑦 (⊥‘(𝐴 𝐵))))
71 chdmj1 31491 . . . . . . . . . . . . . . 15 ((𝐴C𝐵C ) → (⊥‘(𝐴 𝐵)) = ((⊥‘𝐴) ∩ (⊥‘𝐵)))
7271adantl 481 . . . . . . . . . . . . . 14 ((𝑦C ∧ (𝐴C𝐵C )) → (⊥‘(𝐴 𝐵)) = ((⊥‘𝐴) ∩ (⊥‘𝐵)))
7372oveq2d 7369 . . . . . . . . . . . . 13 ((𝑦C ∧ (𝐴C𝐵C )) → (𝑦 (⊥‘(𝐴 𝐵))) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))))
7470, 73eqtrd 2764 . . . . . . . . . . . 12 ((𝑦C ∧ (𝐴C𝐵C )) → (⊥‘((⊥‘𝑦) ∩ (𝐴 𝐵))) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))))
7567, 74eqeq12d 2745 . . . . . . . . . . 11 ((𝑦C ∧ (𝐴C𝐵C )) → ((⊥‘(((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵)) = (⊥‘((⊥‘𝑦) ∩ (𝐴 𝐵))) ↔ ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))))
7675ancoms 458 . . . . . . . . . 10 (((𝐴C𝐵C ) ∧ 𝑦C ) → ((⊥‘(((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵)) = (⊥‘((⊥‘𝑦) ∩ (𝐴 𝐵))) ↔ ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))))
7758, 76imbitrid 244 . . . . . . . . 9 (((𝐴C𝐵C ) ∧ 𝑦C ) → ((((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))))
7857, 77imim12d 81 . . . . . . . 8 (((𝐴C𝐵C ) ∧ 𝑦C ) → ((𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵))) → (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
7954, 78syld 47 . . . . . . 7 (((𝐴C𝐵C ) ∧ 𝑦C ) → (((⊥‘𝑦) ∈ C → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))) → (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
8079ex 412 . . . . . 6 ((𝐴C𝐵C ) → (𝑦C → (((⊥‘𝑦) ∈ C → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))) → (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))))))
8180com23 86 . . . . 5 ((𝐴C𝐵C ) → (((⊥‘𝑦) ∈ C → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))) → (𝑦C → (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))))))
8250, 81syl5 34 . . . 4 ((𝐴C𝐵C ) → (∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))) → (𝑦C → (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))))))
8382ralrimdv 3127 . . 3 ((𝐴C𝐵C ) → (∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))) → ∀𝑦C (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
8443, 83impbid 212 . 2 ((𝐴C𝐵C ) → (∀𝑦C (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))) ↔ ∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
85 mdbr 32256 . . 3 (((⊥‘𝐴) ∈ C ∧ (⊥‘𝐵) ∈ C ) → ((⊥‘𝐴) 𝑀 (⊥‘𝐵) ↔ ∀𝑦C (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
8616, 26, 85syl2an 596 . 2 ((𝐴C𝐵C ) → ((⊥‘𝐴) 𝑀 (⊥‘𝐵) ↔ ∀𝑦C (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
87 dmdbr 32261 . 2 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ ∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
8884, 86, 873bitr4rd 312 1 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ (⊥‘𝐴) 𝑀 (⊥‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  cin 3904  wss 3905   class class class wbr 5095  cfv 6486  (class class class)co 7353   C cch 30891  cort 30892   chj 30895   𝑀 cmd 30928   𝑀* cdmd 30929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cc 10348  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107  ax-mulf 11108  ax-hilex 30961  ax-hfvadd 30962  ax-hvcom 30963  ax-hvass 30964  ax-hv0cl 30965  ax-hvaddid 30966  ax-hfvmul 30967  ax-hvmulid 30968  ax-hvmulass 30969  ax-hvdistr1 30970  ax-hvdistr2 30971  ax-hvmul0 30972  ax-hfi 31041  ax-his1 31044  ax-his2 31045  ax-his3 31046  ax-his4 31047  ax-hcompl 31164
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-acn 9857  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-rlim 15414  df-sum 15612  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-cn 23130  df-cnp 23131  df-lm 23132  df-haus 23218  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cfil 25171  df-cau 25172  df-cmet 25173  df-grpo 30455  df-gid 30456  df-ginv 30457  df-gdiv 30458  df-ablo 30507  df-vc 30521  df-nv 30554  df-va 30557  df-ba 30558  df-sm 30559  df-0v 30560  df-vs 30561  df-nmcv 30562  df-ims 30563  df-dip 30663  df-ssp 30684  df-ph 30775  df-cbn 30825  df-hnorm 30930  df-hba 30931  df-hvsub 30933  df-hlim 30934  df-hcau 30935  df-sh 31169  df-ch 31183  df-oc 31214  df-ch0 31215  df-shs 31270  df-chj 31272  df-md 32242  df-dmd 32243
This theorem is referenced by:  mddmd  32263  ssdmd1  32275  mdsldmd1i  32293  cvdmd  32299  dmdsym  32375  cmdmdi  32379
  Copyright terms: Public domain W3C validator