HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  dmdmd Structured version   Visualization version   GIF version

Theorem dmdmd 32236
Description: The dual modular pair property expressed in terms of the modular pair property, that hold in Hilbert lattices. Remark 29.6 of [MaedaMaeda] p. 130. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
dmdmd ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ (⊥‘𝐴) 𝑀 (⊥‘𝐵)))

Proof of Theorem dmdmd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3975 . . . . . . 7 (𝑦 = (⊥‘𝑥) → (𝑦 ⊆ (⊥‘𝐵) ↔ (⊥‘𝑥) ⊆ (⊥‘𝐵)))
2 oveq1 7397 . . . . . . . . 9 (𝑦 = (⊥‘𝑥) → (𝑦 (⊥‘𝐴)) = ((⊥‘𝑥) ∨ (⊥‘𝐴)))
32ineq1d 4185 . . . . . . . 8 (𝑦 = (⊥‘𝑥) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)))
4 oveq1 7397 . . . . . . . 8 (𝑦 = (⊥‘𝑥) → (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))
53, 4eqeq12d 2746 . . . . . . 7 (𝑦 = (⊥‘𝑥) → (((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))) ↔ (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵)))))
61, 5imbi12d 344 . . . . . 6 (𝑦 = (⊥‘𝑥) → ((𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))) ↔ ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
76rspccv 3588 . . . . 5 (∀𝑦C (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))) → ((⊥‘𝑥) ∈ C → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
8 choccl 31242 . . . . . . . . . . 11 (𝑥C → (⊥‘𝑥) ∈ C )
98imim1i 63 . . . . . . . . . 10 (((⊥‘𝑥) ∈ C → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))) → (𝑥C → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
109com12 32 . . . . . . . . 9 (𝑥C → (((⊥‘𝑥) ∈ C → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))) → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
1110adantl 481 . . . . . . . 8 (((𝐴C𝐵C ) ∧ 𝑥C ) → (((⊥‘𝑥) ∈ C → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))) → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
12 chsscon3 31436 . . . . . . . . . . 11 ((𝐵C𝑥C ) → (𝐵𝑥 ↔ (⊥‘𝑥) ⊆ (⊥‘𝐵)))
1312biimpd 229 . . . . . . . . . 10 ((𝐵C𝑥C ) → (𝐵𝑥 → (⊥‘𝑥) ⊆ (⊥‘𝐵)))
1413adantll 714 . . . . . . . . 9 (((𝐴C𝐵C ) ∧ 𝑥C ) → (𝐵𝑥 → (⊥‘𝑥) ⊆ (⊥‘𝐵)))
15 fveq2 6861 . . . . . . . . . 10 ((((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))) → (⊥‘(((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵))) = (⊥‘((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵)))))
16 choccl 31242 . . . . . . . . . . . . . . . 16 (𝐴C → (⊥‘𝐴) ∈ C )
17 chjcl 31293 . . . . . . . . . . . . . . . 16 (((⊥‘𝑥) ∈ C ∧ (⊥‘𝐴) ∈ C ) → ((⊥‘𝑥) ∨ (⊥‘𝐴)) ∈ C )
188, 16, 17syl2an 596 . . . . . . . . . . . . . . 15 ((𝑥C𝐴C ) → ((⊥‘𝑥) ∨ (⊥‘𝐴)) ∈ C )
19 chdmm3 31463 . . . . . . . . . . . . . . 15 ((((⊥‘𝑥) ∨ (⊥‘𝐴)) ∈ C𝐵C ) → (⊥‘(((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵))) = ((⊥‘((⊥‘𝑥) ∨ (⊥‘𝐴))) ∨ 𝐵))
2018, 19sylan 580 . . . . . . . . . . . . . 14 (((𝑥C𝐴C ) ∧ 𝐵C ) → (⊥‘(((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵))) = ((⊥‘((⊥‘𝑥) ∨ (⊥‘𝐴))) ∨ 𝐵))
21 chdmj4 31468 . . . . . . . . . . . . . . . 16 ((𝑥C𝐴C ) → (⊥‘((⊥‘𝑥) ∨ (⊥‘𝐴))) = (𝑥𝐴))
2221adantr 480 . . . . . . . . . . . . . . 15 (((𝑥C𝐴C ) ∧ 𝐵C ) → (⊥‘((⊥‘𝑥) ∨ (⊥‘𝐴))) = (𝑥𝐴))
2322oveq1d 7405 . . . . . . . . . . . . . 14 (((𝑥C𝐴C ) ∧ 𝐵C ) → ((⊥‘((⊥‘𝑥) ∨ (⊥‘𝐴))) ∨ 𝐵) = ((𝑥𝐴) ∨ 𝐵))
2420, 23eqtrd 2765 . . . . . . . . . . . . 13 (((𝑥C𝐴C ) ∧ 𝐵C ) → (⊥‘(((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵))) = ((𝑥𝐴) ∨ 𝐵))
2524anasss 466 . . . . . . . . . . . 12 ((𝑥C ∧ (𝐴C𝐵C )) → (⊥‘(((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵))) = ((𝑥𝐴) ∨ 𝐵))
26 choccl 31242 . . . . . . . . . . . . . . 15 (𝐵C → (⊥‘𝐵) ∈ C )
27 chincl 31435 . . . . . . . . . . . . . . 15 (((⊥‘𝐴) ∈ C ∧ (⊥‘𝐵) ∈ C ) → ((⊥‘𝐴) ∩ (⊥‘𝐵)) ∈ C )
2816, 26, 27syl2an 596 . . . . . . . . . . . . . 14 ((𝐴C𝐵C ) → ((⊥‘𝐴) ∩ (⊥‘𝐵)) ∈ C )
29 chdmj2 31466 . . . . . . . . . . . . . 14 ((𝑥C ∧ ((⊥‘𝐴) ∩ (⊥‘𝐵)) ∈ C ) → (⊥‘((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵)))) = (𝑥 ∩ (⊥‘((⊥‘𝐴) ∩ (⊥‘𝐵)))))
3028, 29sylan2 593 . . . . . . . . . . . . 13 ((𝑥C ∧ (𝐴C𝐵C )) → (⊥‘((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵)))) = (𝑥 ∩ (⊥‘((⊥‘𝐴) ∩ (⊥‘𝐵)))))
31 chdmm4 31464 . . . . . . . . . . . . . . 15 ((𝐴C𝐵C ) → (⊥‘((⊥‘𝐴) ∩ (⊥‘𝐵))) = (𝐴 𝐵))
3231adantl 481 . . . . . . . . . . . . . 14 ((𝑥C ∧ (𝐴C𝐵C )) → (⊥‘((⊥‘𝐴) ∩ (⊥‘𝐵))) = (𝐴 𝐵))
3332ineq2d 4186 . . . . . . . . . . . . 13 ((𝑥C ∧ (𝐴C𝐵C )) → (𝑥 ∩ (⊥‘((⊥‘𝐴) ∩ (⊥‘𝐵)))) = (𝑥 ∩ (𝐴 𝐵)))
3430, 33eqtrd 2765 . . . . . . . . . . . 12 ((𝑥C ∧ (𝐴C𝐵C )) → (⊥‘((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵)))) = (𝑥 ∩ (𝐴 𝐵)))
3525, 34eqeq12d 2746 . . . . . . . . . . 11 ((𝑥C ∧ (𝐴C𝐵C )) → ((⊥‘(((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵))) = (⊥‘((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵)))) ↔ ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))))
3635ancoms 458 . . . . . . . . . 10 (((𝐴C𝐵C ) ∧ 𝑥C ) → ((⊥‘(((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵))) = (⊥‘((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵)))) ↔ ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))))
3715, 36imbitrid 244 . . . . . . . . 9 (((𝐴C𝐵C ) ∧ 𝑥C ) → ((((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))) → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))))
3814, 37imim12d 81 . . . . . . . 8 (((𝐴C𝐵C ) ∧ 𝑥C ) → (((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵)))) → (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
3911, 38syld 47 . . . . . . 7 (((𝐴C𝐵C ) ∧ 𝑥C ) → (((⊥‘𝑥) ∈ C → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))) → (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
4039ex 412 . . . . . 6 ((𝐴C𝐵C ) → (𝑥C → (((⊥‘𝑥) ∈ C → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))) → (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))))))
4140com23 86 . . . . 5 ((𝐴C𝐵C ) → (((⊥‘𝑥) ∈ C → ((⊥‘𝑥) ⊆ (⊥‘𝐵) → (((⊥‘𝑥) ∨ (⊥‘𝐴)) ∩ (⊥‘𝐵)) = ((⊥‘𝑥) ∨ ((⊥‘𝐴) ∩ (⊥‘𝐵))))) → (𝑥C → (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))))))
427, 41syl5 34 . . . 4 ((𝐴C𝐵C ) → (∀𝑦C (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))) → (𝑥C → (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))))))
4342ralrimdv 3132 . . 3 ((𝐴C𝐵C ) → (∀𝑦C (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))) → ∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
44 sseq2 3976 . . . . . . 7 (𝑥 = (⊥‘𝑦) → (𝐵𝑥𝐵 ⊆ (⊥‘𝑦)))
45 ineq1 4179 . . . . . . . . 9 (𝑥 = (⊥‘𝑦) → (𝑥𝐴) = ((⊥‘𝑦) ∩ 𝐴))
4645oveq1d 7405 . . . . . . . 8 (𝑥 = (⊥‘𝑦) → ((𝑥𝐴) ∨ 𝐵) = (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵))
47 ineq1 4179 . . . . . . . 8 (𝑥 = (⊥‘𝑦) → (𝑥 ∩ (𝐴 𝐵)) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))
4846, 47eqeq12d 2746 . . . . . . 7 (𝑥 = (⊥‘𝑦) → (((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)) ↔ (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵))))
4944, 48imbi12d 344 . . . . . 6 (𝑥 = (⊥‘𝑦) → ((𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))) ↔ (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))))
5049rspccv 3588 . . . . 5 (∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))) → ((⊥‘𝑦) ∈ C → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))))
51 choccl 31242 . . . . . . . . . . 11 (𝑦C → (⊥‘𝑦) ∈ C )
5251imim1i 63 . . . . . . . . . 10 (((⊥‘𝑦) ∈ C → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))) → (𝑦C → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))))
5352com12 32 . . . . . . . . 9 (𝑦C → (((⊥‘𝑦) ∈ C → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))) → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))))
5453adantl 481 . . . . . . . 8 (((𝐴C𝐵C ) ∧ 𝑦C ) → (((⊥‘𝑦) ∈ C → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))) → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))))
55 chsscon2 31438 . . . . . . . . . . 11 ((𝐵C𝑦C ) → (𝐵 ⊆ (⊥‘𝑦) ↔ 𝑦 ⊆ (⊥‘𝐵)))
5655biimprd 248 . . . . . . . . . 10 ((𝐵C𝑦C ) → (𝑦 ⊆ (⊥‘𝐵) → 𝐵 ⊆ (⊥‘𝑦)))
5756adantll 714 . . . . . . . . 9 (((𝐴C𝐵C ) ∧ 𝑦C ) → (𝑦 ⊆ (⊥‘𝐵) → 𝐵 ⊆ (⊥‘𝑦)))
58 fveq2 6861 . . . . . . . . . 10 ((((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)) → (⊥‘(((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵)) = (⊥‘((⊥‘𝑦) ∩ (𝐴 𝐵))))
59 chincl 31435 . . . . . . . . . . . . . . . 16 (((⊥‘𝑦) ∈ C𝐴C ) → ((⊥‘𝑦) ∩ 𝐴) ∈ C )
6051, 59sylan 580 . . . . . . . . . . . . . . 15 ((𝑦C𝐴C ) → ((⊥‘𝑦) ∩ 𝐴) ∈ C )
61 chdmj1 31465 . . . . . . . . . . . . . . 15 ((((⊥‘𝑦) ∩ 𝐴) ∈ C𝐵C ) → (⊥‘(((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵)) = ((⊥‘((⊥‘𝑦) ∩ 𝐴)) ∩ (⊥‘𝐵)))
6260, 61sylan 580 . . . . . . . . . . . . . 14 (((𝑦C𝐴C ) ∧ 𝐵C ) → (⊥‘(((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵)) = ((⊥‘((⊥‘𝑦) ∩ 𝐴)) ∩ (⊥‘𝐵)))
63 chdmm2 31462 . . . . . . . . . . . . . . . 16 ((𝑦C𝐴C ) → (⊥‘((⊥‘𝑦) ∩ 𝐴)) = (𝑦 (⊥‘𝐴)))
6463adantr 480 . . . . . . . . . . . . . . 15 (((𝑦C𝐴C ) ∧ 𝐵C ) → (⊥‘((⊥‘𝑦) ∩ 𝐴)) = (𝑦 (⊥‘𝐴)))
6564ineq1d 4185 . . . . . . . . . . . . . 14 (((𝑦C𝐴C ) ∧ 𝐵C ) → ((⊥‘((⊥‘𝑦) ∩ 𝐴)) ∩ (⊥‘𝐵)) = ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)))
6662, 65eqtrd 2765 . . . . . . . . . . . . 13 (((𝑦C𝐴C ) ∧ 𝐵C ) → (⊥‘(((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵)) = ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)))
6766anasss 466 . . . . . . . . . . . 12 ((𝑦C ∧ (𝐴C𝐵C )) → (⊥‘(((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵)) = ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)))
68 chjcl 31293 . . . . . . . . . . . . . 14 ((𝐴C𝐵C ) → (𝐴 𝐵) ∈ C )
69 chdmm2 31462 . . . . . . . . . . . . . 14 ((𝑦C ∧ (𝐴 𝐵) ∈ C ) → (⊥‘((⊥‘𝑦) ∩ (𝐴 𝐵))) = (𝑦 (⊥‘(𝐴 𝐵))))
7068, 69sylan2 593 . . . . . . . . . . . . 13 ((𝑦C ∧ (𝐴C𝐵C )) → (⊥‘((⊥‘𝑦) ∩ (𝐴 𝐵))) = (𝑦 (⊥‘(𝐴 𝐵))))
71 chdmj1 31465 . . . . . . . . . . . . . . 15 ((𝐴C𝐵C ) → (⊥‘(𝐴 𝐵)) = ((⊥‘𝐴) ∩ (⊥‘𝐵)))
7271adantl 481 . . . . . . . . . . . . . 14 ((𝑦C ∧ (𝐴C𝐵C )) → (⊥‘(𝐴 𝐵)) = ((⊥‘𝐴) ∩ (⊥‘𝐵)))
7372oveq2d 7406 . . . . . . . . . . . . 13 ((𝑦C ∧ (𝐴C𝐵C )) → (𝑦 (⊥‘(𝐴 𝐵))) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))))
7470, 73eqtrd 2765 . . . . . . . . . . . 12 ((𝑦C ∧ (𝐴C𝐵C )) → (⊥‘((⊥‘𝑦) ∩ (𝐴 𝐵))) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))))
7567, 74eqeq12d 2746 . . . . . . . . . . 11 ((𝑦C ∧ (𝐴C𝐵C )) → ((⊥‘(((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵)) = (⊥‘((⊥‘𝑦) ∩ (𝐴 𝐵))) ↔ ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))))
7675ancoms 458 . . . . . . . . . 10 (((𝐴C𝐵C ) ∧ 𝑦C ) → ((⊥‘(((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵)) = (⊥‘((⊥‘𝑦) ∩ (𝐴 𝐵))) ↔ ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))))
7758, 76imbitrid 244 . . . . . . . . 9 (((𝐴C𝐵C ) ∧ 𝑦C ) → ((((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))))
7857, 77imim12d 81 . . . . . . . 8 (((𝐴C𝐵C ) ∧ 𝑦C ) → ((𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵))) → (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
7954, 78syld 47 . . . . . . 7 (((𝐴C𝐵C ) ∧ 𝑦C ) → (((⊥‘𝑦) ∈ C → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))) → (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
8079ex 412 . . . . . 6 ((𝐴C𝐵C ) → (𝑦C → (((⊥‘𝑦) ∈ C → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))) → (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))))))
8180com23 86 . . . . 5 ((𝐴C𝐵C ) → (((⊥‘𝑦) ∈ C → (𝐵 ⊆ (⊥‘𝑦) → (((⊥‘𝑦) ∩ 𝐴) ∨ 𝐵) = ((⊥‘𝑦) ∩ (𝐴 𝐵)))) → (𝑦C → (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))))))
8250, 81syl5 34 . . . 4 ((𝐴C𝐵C ) → (∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))) → (𝑦C → (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))))))
8382ralrimdv 3132 . . 3 ((𝐴C𝐵C ) → (∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))) → ∀𝑦C (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
8443, 83impbid 212 . 2 ((𝐴C𝐵C ) → (∀𝑦C (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵)))) ↔ ∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
85 mdbr 32230 . . 3 (((⊥‘𝐴) ∈ C ∧ (⊥‘𝐵) ∈ C ) → ((⊥‘𝐴) 𝑀 (⊥‘𝐵) ↔ ∀𝑦C (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
8616, 26, 85syl2an 596 . 2 ((𝐴C𝐵C ) → ((⊥‘𝐴) 𝑀 (⊥‘𝐵) ↔ ∀𝑦C (𝑦 ⊆ (⊥‘𝐵) → ((𝑦 (⊥‘𝐴)) ∩ (⊥‘𝐵)) = (𝑦 ((⊥‘𝐴) ∩ (⊥‘𝐵))))))
87 dmdbr 32235 . 2 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ ∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
8884, 86, 873bitr4rd 312 1 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ (⊥‘𝐴) 𝑀 (⊥‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  cin 3916  wss 3917   class class class wbr 5110  cfv 6514  (class class class)co 7390   C cch 30865  cort 30866   chj 30869   𝑀 cmd 30902   𝑀* cdmd 30903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155  ax-hilex 30935  ax-hfvadd 30936  ax-hvcom 30937  ax-hvass 30938  ax-hv0cl 30939  ax-hvaddid 30940  ax-hfvmul 30941  ax-hvmulid 30942  ax-hvmulass 30943  ax-hvdistr1 30944  ax-hvdistr2 30945  ax-hvmul0 30946  ax-hfi 31015  ax-his1 31018  ax-his2 31019  ax-his3 31020  ax-his4 31021  ax-hcompl 31138
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-cn 23121  df-cnp 23122  df-lm 23123  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cfil 25162  df-cau 25163  df-cmet 25164  df-grpo 30429  df-gid 30430  df-ginv 30431  df-gdiv 30432  df-ablo 30481  df-vc 30495  df-nv 30528  df-va 30531  df-ba 30532  df-sm 30533  df-0v 30534  df-vs 30535  df-nmcv 30536  df-ims 30537  df-dip 30637  df-ssp 30658  df-ph 30749  df-cbn 30799  df-hnorm 30904  df-hba 30905  df-hvsub 30907  df-hlim 30908  df-hcau 30909  df-sh 31143  df-ch 31157  df-oc 31188  df-ch0 31189  df-shs 31244  df-chj 31246  df-md 32216  df-dmd 32217
This theorem is referenced by:  mddmd  32237  ssdmd1  32249  mdsldmd1i  32267  cvdmd  32273  dmdsym  32349  cmdmdi  32353
  Copyright terms: Public domain W3C validator