MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snopsuppss Structured version   Visualization version   GIF version

Theorem snopsuppss 8220
Description: The support of a singleton containing an ordered pair is a subset of the singleton containing the first element of the ordered pair, i.e. it is empty or the singleton itself. (Contributed by AV, 19-Jul-2019.)
Assertion
Ref Expression
snopsuppss ({⟨𝑋, 𝑌⟩} supp 𝑍) ⊆ {𝑋}

Proof of Theorem snopsuppss
StepHypRef Expression
1 suppssdm 8218 . 2 ({⟨𝑋, 𝑌⟩} supp 𝑍) ⊆ dom {⟨𝑋, 𝑌⟩}
2 dmsnopss 6245 . 2 dom {⟨𝑋, 𝑌⟩} ⊆ {𝑋}
31, 2sstri 4018 1 ({⟨𝑋, 𝑌⟩} supp 𝑍) ⊆ {𝑋}
Colors of variables: wff setvar class
Syntax hints:  wss 3976  {csn 4648  cop 4654  dom cdm 5700  (class class class)co 7448   supp csupp 8201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-supp 8202
This theorem is referenced by:  snopfsupp  9460
  Copyright terms: Public domain W3C validator