MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snopsuppss Structured version   Visualization version   GIF version

Theorem snopsuppss 8202
Description: The support of a singleton containing an ordered pair is a subset of the singleton containing the first element of the ordered pair, i.e. it is empty or the singleton itself. (Contributed by AV, 19-Jul-2019.)
Assertion
Ref Expression
snopsuppss ({⟨𝑋, 𝑌⟩} supp 𝑍) ⊆ {𝑋}

Proof of Theorem snopsuppss
StepHypRef Expression
1 suppssdm 8200 . 2 ({⟨𝑋, 𝑌⟩} supp 𝑍) ⊆ dom {⟨𝑋, 𝑌⟩}
2 dmsnopss 6235 . 2 dom {⟨𝑋, 𝑌⟩} ⊆ {𝑋}
31, 2sstri 4004 1 ({⟨𝑋, 𝑌⟩} supp 𝑍) ⊆ {𝑋}
Colors of variables: wff setvar class
Syntax hints:  wss 3962  {csn 4630  cop 4636  dom cdm 5688  (class class class)co 7430   supp csupp 8183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-sbc 3791  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-supp 8184
This theorem is referenced by:  snopfsupp  9428
  Copyright terms: Public domain W3C validator