| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snopsuppss | Structured version Visualization version GIF version | ||
| Description: The support of a singleton containing an ordered pair is a subset of the singleton containing the first element of the ordered pair, i.e. it is empty or the singleton itself. (Contributed by AV, 19-Jul-2019.) |
| Ref | Expression |
|---|---|
| snopsuppss | ⊢ ({〈𝑋, 𝑌〉} supp 𝑍) ⊆ {𝑋} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppssdm 8133 | . 2 ⊢ ({〈𝑋, 𝑌〉} supp 𝑍) ⊆ dom {〈𝑋, 𝑌〉} | |
| 2 | dmsnopss 6175 | . 2 ⊢ dom {〈𝑋, 𝑌〉} ⊆ {𝑋} | |
| 3 | 1, 2 | sstri 3953 | 1 ⊢ ({〈𝑋, 𝑌〉} supp 𝑍) ⊆ {𝑋} |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3911 {csn 4585 〈cop 4591 dom cdm 5631 (class class class)co 7369 supp csupp 8116 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-supp 8117 |
| This theorem is referenced by: snopfsupp 9318 |
| Copyright terms: Public domain | W3C validator |