![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snopsuppss | Structured version Visualization version GIF version |
Description: The support of a singleton containing an ordered pair is a subset of the singleton containing the first element of the ordered pair, i.e. it is empty or the singleton itself. (Contributed by AV, 19-Jul-2019.) |
Ref | Expression |
---|---|
snopsuppss | ⊢ ({〈𝑋, 𝑌〉} supp 𝑍) ⊆ {𝑋} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppssdm 8183 | . 2 ⊢ ({〈𝑋, 𝑌〉} supp 𝑍) ⊆ dom {〈𝑋, 𝑌〉} | |
2 | dmsnopss 6217 | . 2 ⊢ dom {〈𝑋, 𝑌〉} ⊆ {𝑋} | |
3 | 1, 2 | sstri 3988 | 1 ⊢ ({〈𝑋, 𝑌〉} supp 𝑍) ⊆ {𝑋} |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3946 {csn 4623 〈cop 4629 dom cdm 5674 (class class class)co 7416 supp csupp 8166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pr 5425 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3776 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5146 df-opab 5208 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6498 df-fun 6548 df-fv 6554 df-ov 7419 df-oprab 7420 df-mpo 7421 df-supp 8167 |
This theorem is referenced by: snopfsupp 9427 |
Copyright terms: Public domain | W3C validator |