Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapfzcons1 Structured version   Visualization version   GIF version

Theorem mapfzcons1 42705
Description: Recover prefix mapping from an extended mapping. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.)
Hypothesis
Ref Expression
mapfzcons.1 𝑀 = (𝑁 + 1)
Assertion
Ref Expression
mapfzcons1 (𝐴 ∈ (𝐵m (1...𝑁)) → ((𝐴 ∪ {⟨𝑀, 𝐶⟩}) ↾ (1...𝑁)) = 𝐴)

Proof of Theorem mapfzcons1
StepHypRef Expression
1 elmapi 8888 . . . 4 (𝐴 ∈ (𝐵m (1...𝑁)) → 𝐴:(1...𝑁)⟶𝐵)
2 ffn 6737 . . . 4 (𝐴:(1...𝑁)⟶𝐵𝐴 Fn (1...𝑁))
3 fnresdm 6688 . . . 4 (𝐴 Fn (1...𝑁) → (𝐴 ↾ (1...𝑁)) = 𝐴)
41, 2, 33syl 18 . . 3 (𝐴 ∈ (𝐵m (1...𝑁)) → (𝐴 ↾ (1...𝑁)) = 𝐴)
54uneq1d 4177 . 2 (𝐴 ∈ (𝐵m (1...𝑁)) → ((𝐴 ↾ (1...𝑁)) ∪ ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁))) = (𝐴 ∪ ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁))))
6 resundir 6015 . 2 ((𝐴 ∪ {⟨𝑀, 𝐶⟩}) ↾ (1...𝑁)) = ((𝐴 ↾ (1...𝑁)) ∪ ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)))
7 dmres 6032 . . . . . 6 dom ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)) = ((1...𝑁) ∩ dom {⟨𝑀, 𝐶⟩})
8 dmsnopss 6236 . . . . . . . . 9 dom {⟨𝑀, 𝐶⟩} ⊆ {𝑀}
9 mapfzcons.1 . . . . . . . . . 10 𝑀 = (𝑁 + 1)
109sneqi 4642 . . . . . . . . 9 {𝑀} = {(𝑁 + 1)}
118, 10sseqtri 4032 . . . . . . . 8 dom {⟨𝑀, 𝐶⟩} ⊆ {(𝑁 + 1)}
12 sslin 4251 . . . . . . . 8 (dom {⟨𝑀, 𝐶⟩} ⊆ {(𝑁 + 1)} → ((1...𝑁) ∩ dom {⟨𝑀, 𝐶⟩}) ⊆ ((1...𝑁) ∩ {(𝑁 + 1)}))
1311, 12ax-mp 5 . . . . . . 7 ((1...𝑁) ∩ dom {⟨𝑀, 𝐶⟩}) ⊆ ((1...𝑁) ∩ {(𝑁 + 1)})
14 fzp1disj 13620 . . . . . . 7 ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅
15 sseq0 4409 . . . . . . 7 ((((1...𝑁) ∩ dom {⟨𝑀, 𝐶⟩}) ⊆ ((1...𝑁) ∩ {(𝑁 + 1)}) ∧ ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅) → ((1...𝑁) ∩ dom {⟨𝑀, 𝐶⟩}) = ∅)
1613, 14, 15mp2an 692 . . . . . 6 ((1...𝑁) ∩ dom {⟨𝑀, 𝐶⟩}) = ∅
177, 16eqtri 2763 . . . . 5 dom ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)) = ∅
18 relres 6026 . . . . . 6 Rel ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁))
19 reldm0 5941 . . . . . 6 (Rel ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)) → (({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)) = ∅ ↔ dom ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)) = ∅))
2018, 19ax-mp 5 . . . . 5 (({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)) = ∅ ↔ dom ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)) = ∅)
2117, 20mpbir 231 . . . 4 ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)) = ∅
2221uneq2i 4175 . . 3 (𝐴 ∪ ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁))) = (𝐴 ∪ ∅)
23 un0 4400 . . 3 (𝐴 ∪ ∅) = 𝐴
2422, 23eqtr2i 2764 . 2 𝐴 = (𝐴 ∪ ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)))
255, 6, 243eqtr4g 2800 1 (𝐴 ∈ (𝐵m (1...𝑁)) → ((𝐴 ∪ {⟨𝑀, 𝐶⟩}) ↾ (1...𝑁)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2106  cun 3961  cin 3962  wss 3963  c0 4339  {csn 4631  cop 4637  dom cdm 5689  cres 5691  Rel wrel 5694   Fn wfn 6558  wf 6559  (class class class)co 7431  m cmap 8865  1c1 11154   + caddc 11156  ...cfz 13544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-z 12612  df-uz 12877  df-fz 13545
This theorem is referenced by:  rexrabdioph  42782
  Copyright terms: Public domain W3C validator