Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapfzcons1 Structured version   Visualization version   GIF version

Theorem mapfzcons1 42740
Description: Recover prefix mapping from an extended mapping. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.)
Hypothesis
Ref Expression
mapfzcons.1 𝑀 = (𝑁 + 1)
Assertion
Ref Expression
mapfzcons1 (𝐴 ∈ (𝐵m (1...𝑁)) → ((𝐴 ∪ {⟨𝑀, 𝐶⟩}) ↾ (1...𝑁)) = 𝐴)

Proof of Theorem mapfzcons1
StepHypRef Expression
1 elmapi 8863 . . . 4 (𝐴 ∈ (𝐵m (1...𝑁)) → 𝐴:(1...𝑁)⟶𝐵)
2 ffn 6706 . . . 4 (𝐴:(1...𝑁)⟶𝐵𝐴 Fn (1...𝑁))
3 fnresdm 6657 . . . 4 (𝐴 Fn (1...𝑁) → (𝐴 ↾ (1...𝑁)) = 𝐴)
41, 2, 33syl 18 . . 3 (𝐴 ∈ (𝐵m (1...𝑁)) → (𝐴 ↾ (1...𝑁)) = 𝐴)
54uneq1d 4142 . 2 (𝐴 ∈ (𝐵m (1...𝑁)) → ((𝐴 ↾ (1...𝑁)) ∪ ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁))) = (𝐴 ∪ ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁))))
6 resundir 5981 . 2 ((𝐴 ∪ {⟨𝑀, 𝐶⟩}) ↾ (1...𝑁)) = ((𝐴 ↾ (1...𝑁)) ∪ ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)))
7 dmres 5999 . . . . . 6 dom ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)) = ((1...𝑁) ∩ dom {⟨𝑀, 𝐶⟩})
8 dmsnopss 6203 . . . . . . . . 9 dom {⟨𝑀, 𝐶⟩} ⊆ {𝑀}
9 mapfzcons.1 . . . . . . . . . 10 𝑀 = (𝑁 + 1)
109sneqi 4612 . . . . . . . . 9 {𝑀} = {(𝑁 + 1)}
118, 10sseqtri 4007 . . . . . . . 8 dom {⟨𝑀, 𝐶⟩} ⊆ {(𝑁 + 1)}
12 sslin 4218 . . . . . . . 8 (dom {⟨𝑀, 𝐶⟩} ⊆ {(𝑁 + 1)} → ((1...𝑁) ∩ dom {⟨𝑀, 𝐶⟩}) ⊆ ((1...𝑁) ∩ {(𝑁 + 1)}))
1311, 12ax-mp 5 . . . . . . 7 ((1...𝑁) ∩ dom {⟨𝑀, 𝐶⟩}) ⊆ ((1...𝑁) ∩ {(𝑁 + 1)})
14 fzp1disj 13600 . . . . . . 7 ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅
15 sseq0 4378 . . . . . . 7 ((((1...𝑁) ∩ dom {⟨𝑀, 𝐶⟩}) ⊆ ((1...𝑁) ∩ {(𝑁 + 1)}) ∧ ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅) → ((1...𝑁) ∩ dom {⟨𝑀, 𝐶⟩}) = ∅)
1613, 14, 15mp2an 692 . . . . . 6 ((1...𝑁) ∩ dom {⟨𝑀, 𝐶⟩}) = ∅
177, 16eqtri 2758 . . . . 5 dom ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)) = ∅
18 relres 5992 . . . . . 6 Rel ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁))
19 reldm0 5907 . . . . . 6 (Rel ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)) → (({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)) = ∅ ↔ dom ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)) = ∅))
2018, 19ax-mp 5 . . . . 5 (({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)) = ∅ ↔ dom ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)) = ∅)
2117, 20mpbir 231 . . . 4 ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)) = ∅
2221uneq2i 4140 . . 3 (𝐴 ∪ ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁))) = (𝐴 ∪ ∅)
23 un0 4369 . . 3 (𝐴 ∪ ∅) = 𝐴
2422, 23eqtr2i 2759 . 2 𝐴 = (𝐴 ∪ ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)))
255, 6, 243eqtr4g 2795 1 (𝐴 ∈ (𝐵m (1...𝑁)) → ((𝐴 ∪ {⟨𝑀, 𝐶⟩}) ↾ (1...𝑁)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  cun 3924  cin 3925  wss 3926  c0 4308  {csn 4601  cop 4607  dom cdm 5654  cres 5656  Rel wrel 5659   Fn wfn 6526  wf 6527  (class class class)co 7405  m cmap 8840  1c1 11130   + caddc 11132  ...cfz 13524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-z 12589  df-uz 12853  df-fz 13525
This theorem is referenced by:  rexrabdioph  42817
  Copyright terms: Public domain W3C validator