![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapfzcons1 | Structured version Visualization version GIF version |
Description: Recover prefix mapping from an extended mapping. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
Ref | Expression |
---|---|
mapfzcons.1 | ⊢ 𝑀 = (𝑁 + 1) |
Ref | Expression |
---|---|
mapfzcons1 | ⊢ (𝐴 ∈ (𝐵 ↑m (1...𝑁)) → ((𝐴 ∪ {〈𝑀, 𝐶〉}) ↾ (1...𝑁)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 8907 | . . . 4 ⊢ (𝐴 ∈ (𝐵 ↑m (1...𝑁)) → 𝐴:(1...𝑁)⟶𝐵) | |
2 | ffn 6747 | . . . 4 ⊢ (𝐴:(1...𝑁)⟶𝐵 → 𝐴 Fn (1...𝑁)) | |
3 | fnresdm 6699 | . . . 4 ⊢ (𝐴 Fn (1...𝑁) → (𝐴 ↾ (1...𝑁)) = 𝐴) | |
4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ (𝐴 ∈ (𝐵 ↑m (1...𝑁)) → (𝐴 ↾ (1...𝑁)) = 𝐴) |
5 | 4 | uneq1d 4190 | . 2 ⊢ (𝐴 ∈ (𝐵 ↑m (1...𝑁)) → ((𝐴 ↾ (1...𝑁)) ∪ ({〈𝑀, 𝐶〉} ↾ (1...𝑁))) = (𝐴 ∪ ({〈𝑀, 𝐶〉} ↾ (1...𝑁)))) |
6 | resundir 6024 | . 2 ⊢ ((𝐴 ∪ {〈𝑀, 𝐶〉}) ↾ (1...𝑁)) = ((𝐴 ↾ (1...𝑁)) ∪ ({〈𝑀, 𝐶〉} ↾ (1...𝑁))) | |
7 | dmres 6041 | . . . . . 6 ⊢ dom ({〈𝑀, 𝐶〉} ↾ (1...𝑁)) = ((1...𝑁) ∩ dom {〈𝑀, 𝐶〉}) | |
8 | dmsnopss 6245 | . . . . . . . . 9 ⊢ dom {〈𝑀, 𝐶〉} ⊆ {𝑀} | |
9 | mapfzcons.1 | . . . . . . . . . 10 ⊢ 𝑀 = (𝑁 + 1) | |
10 | 9 | sneqi 4659 | . . . . . . . . 9 ⊢ {𝑀} = {(𝑁 + 1)} |
11 | 8, 10 | sseqtri 4045 | . . . . . . . 8 ⊢ dom {〈𝑀, 𝐶〉} ⊆ {(𝑁 + 1)} |
12 | sslin 4264 | . . . . . . . 8 ⊢ (dom {〈𝑀, 𝐶〉} ⊆ {(𝑁 + 1)} → ((1...𝑁) ∩ dom {〈𝑀, 𝐶〉}) ⊆ ((1...𝑁) ∩ {(𝑁 + 1)})) | |
13 | 11, 12 | ax-mp 5 | . . . . . . 7 ⊢ ((1...𝑁) ∩ dom {〈𝑀, 𝐶〉}) ⊆ ((1...𝑁) ∩ {(𝑁 + 1)}) |
14 | fzp1disj 13643 | . . . . . . 7 ⊢ ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅ | |
15 | sseq0 4426 | . . . . . . 7 ⊢ ((((1...𝑁) ∩ dom {〈𝑀, 𝐶〉}) ⊆ ((1...𝑁) ∩ {(𝑁 + 1)}) ∧ ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅) → ((1...𝑁) ∩ dom {〈𝑀, 𝐶〉}) = ∅) | |
16 | 13, 14, 15 | mp2an 691 | . . . . . 6 ⊢ ((1...𝑁) ∩ dom {〈𝑀, 𝐶〉}) = ∅ |
17 | 7, 16 | eqtri 2768 | . . . . 5 ⊢ dom ({〈𝑀, 𝐶〉} ↾ (1...𝑁)) = ∅ |
18 | relres 6035 | . . . . . 6 ⊢ Rel ({〈𝑀, 𝐶〉} ↾ (1...𝑁)) | |
19 | reldm0 5952 | . . . . . 6 ⊢ (Rel ({〈𝑀, 𝐶〉} ↾ (1...𝑁)) → (({〈𝑀, 𝐶〉} ↾ (1...𝑁)) = ∅ ↔ dom ({〈𝑀, 𝐶〉} ↾ (1...𝑁)) = ∅)) | |
20 | 18, 19 | ax-mp 5 | . . . . 5 ⊢ (({〈𝑀, 𝐶〉} ↾ (1...𝑁)) = ∅ ↔ dom ({〈𝑀, 𝐶〉} ↾ (1...𝑁)) = ∅) |
21 | 17, 20 | mpbir 231 | . . . 4 ⊢ ({〈𝑀, 𝐶〉} ↾ (1...𝑁)) = ∅ |
22 | 21 | uneq2i 4188 | . . 3 ⊢ (𝐴 ∪ ({〈𝑀, 𝐶〉} ↾ (1...𝑁))) = (𝐴 ∪ ∅) |
23 | un0 4417 | . . 3 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
24 | 22, 23 | eqtr2i 2769 | . 2 ⊢ 𝐴 = (𝐴 ∪ ({〈𝑀, 𝐶〉} ↾ (1...𝑁))) |
25 | 5, 6, 24 | 3eqtr4g 2805 | 1 ⊢ (𝐴 ∈ (𝐵 ↑m (1...𝑁)) → ((𝐴 ∪ {〈𝑀, 𝐶〉}) ↾ (1...𝑁)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∪ cun 3974 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 {csn 4648 〈cop 4654 dom cdm 5700 ↾ cres 5702 Rel wrel 5705 Fn wfn 6568 ⟶wf 6569 (class class class)co 7448 ↑m cmap 8884 1c1 11185 + caddc 11187 ...cfz 13567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-z 12640 df-uz 12904 df-fz 13568 |
This theorem is referenced by: rexrabdioph 42750 |
Copyright terms: Public domain | W3C validator |