![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapfzcons1 | Structured version Visualization version GIF version |
Description: Recover prefix mapping from an extended mapping. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
Ref | Expression |
---|---|
mapfzcons.1 | ⊢ 𝑀 = (𝑁 + 1) |
Ref | Expression |
---|---|
mapfzcons1 | ⊢ (𝐴 ∈ (𝐵 ↑m (1...𝑁)) → ((𝐴 ∪ {〈𝑀, 𝐶〉}) ↾ (1...𝑁)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 8888 | . . . 4 ⊢ (𝐴 ∈ (𝐵 ↑m (1...𝑁)) → 𝐴:(1...𝑁)⟶𝐵) | |
2 | ffn 6737 | . . . 4 ⊢ (𝐴:(1...𝑁)⟶𝐵 → 𝐴 Fn (1...𝑁)) | |
3 | fnresdm 6688 | . . . 4 ⊢ (𝐴 Fn (1...𝑁) → (𝐴 ↾ (1...𝑁)) = 𝐴) | |
4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ (𝐴 ∈ (𝐵 ↑m (1...𝑁)) → (𝐴 ↾ (1...𝑁)) = 𝐴) |
5 | 4 | uneq1d 4177 | . 2 ⊢ (𝐴 ∈ (𝐵 ↑m (1...𝑁)) → ((𝐴 ↾ (1...𝑁)) ∪ ({〈𝑀, 𝐶〉} ↾ (1...𝑁))) = (𝐴 ∪ ({〈𝑀, 𝐶〉} ↾ (1...𝑁)))) |
6 | resundir 6015 | . 2 ⊢ ((𝐴 ∪ {〈𝑀, 𝐶〉}) ↾ (1...𝑁)) = ((𝐴 ↾ (1...𝑁)) ∪ ({〈𝑀, 𝐶〉} ↾ (1...𝑁))) | |
7 | dmres 6032 | . . . . . 6 ⊢ dom ({〈𝑀, 𝐶〉} ↾ (1...𝑁)) = ((1...𝑁) ∩ dom {〈𝑀, 𝐶〉}) | |
8 | dmsnopss 6236 | . . . . . . . . 9 ⊢ dom {〈𝑀, 𝐶〉} ⊆ {𝑀} | |
9 | mapfzcons.1 | . . . . . . . . . 10 ⊢ 𝑀 = (𝑁 + 1) | |
10 | 9 | sneqi 4642 | . . . . . . . . 9 ⊢ {𝑀} = {(𝑁 + 1)} |
11 | 8, 10 | sseqtri 4032 | . . . . . . . 8 ⊢ dom {〈𝑀, 𝐶〉} ⊆ {(𝑁 + 1)} |
12 | sslin 4251 | . . . . . . . 8 ⊢ (dom {〈𝑀, 𝐶〉} ⊆ {(𝑁 + 1)} → ((1...𝑁) ∩ dom {〈𝑀, 𝐶〉}) ⊆ ((1...𝑁) ∩ {(𝑁 + 1)})) | |
13 | 11, 12 | ax-mp 5 | . . . . . . 7 ⊢ ((1...𝑁) ∩ dom {〈𝑀, 𝐶〉}) ⊆ ((1...𝑁) ∩ {(𝑁 + 1)}) |
14 | fzp1disj 13620 | . . . . . . 7 ⊢ ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅ | |
15 | sseq0 4409 | . . . . . . 7 ⊢ ((((1...𝑁) ∩ dom {〈𝑀, 𝐶〉}) ⊆ ((1...𝑁) ∩ {(𝑁 + 1)}) ∧ ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅) → ((1...𝑁) ∩ dom {〈𝑀, 𝐶〉}) = ∅) | |
16 | 13, 14, 15 | mp2an 692 | . . . . . 6 ⊢ ((1...𝑁) ∩ dom {〈𝑀, 𝐶〉}) = ∅ |
17 | 7, 16 | eqtri 2763 | . . . . 5 ⊢ dom ({〈𝑀, 𝐶〉} ↾ (1...𝑁)) = ∅ |
18 | relres 6026 | . . . . . 6 ⊢ Rel ({〈𝑀, 𝐶〉} ↾ (1...𝑁)) | |
19 | reldm0 5941 | . . . . . 6 ⊢ (Rel ({〈𝑀, 𝐶〉} ↾ (1...𝑁)) → (({〈𝑀, 𝐶〉} ↾ (1...𝑁)) = ∅ ↔ dom ({〈𝑀, 𝐶〉} ↾ (1...𝑁)) = ∅)) | |
20 | 18, 19 | ax-mp 5 | . . . . 5 ⊢ (({〈𝑀, 𝐶〉} ↾ (1...𝑁)) = ∅ ↔ dom ({〈𝑀, 𝐶〉} ↾ (1...𝑁)) = ∅) |
21 | 17, 20 | mpbir 231 | . . . 4 ⊢ ({〈𝑀, 𝐶〉} ↾ (1...𝑁)) = ∅ |
22 | 21 | uneq2i 4175 | . . 3 ⊢ (𝐴 ∪ ({〈𝑀, 𝐶〉} ↾ (1...𝑁))) = (𝐴 ∪ ∅) |
23 | un0 4400 | . . 3 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
24 | 22, 23 | eqtr2i 2764 | . 2 ⊢ 𝐴 = (𝐴 ∪ ({〈𝑀, 𝐶〉} ↾ (1...𝑁))) |
25 | 5, 6, 24 | 3eqtr4g 2800 | 1 ⊢ (𝐴 ∈ (𝐵 ↑m (1...𝑁)) → ((𝐴 ∪ {〈𝑀, 𝐶〉}) ↾ (1...𝑁)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 ∪ cun 3961 ∩ cin 3962 ⊆ wss 3963 ∅c0 4339 {csn 4631 〈cop 4637 dom cdm 5689 ↾ cres 5691 Rel wrel 5694 Fn wfn 6558 ⟶wf 6559 (class class class)co 7431 ↑m cmap 8865 1c1 11154 + caddc 11156 ...cfz 13544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-z 12612 df-uz 12877 df-fz 13545 |
This theorem is referenced by: rexrabdioph 42782 |
Copyright terms: Public domain | W3C validator |