| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapfzcons1 | Structured version Visualization version GIF version | ||
| Description: Recover prefix mapping from an extended mapping. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
| Ref | Expression |
|---|---|
| mapfzcons.1 | ⊢ 𝑀 = (𝑁 + 1) |
| Ref | Expression |
|---|---|
| mapfzcons1 | ⊢ (𝐴 ∈ (𝐵 ↑m (1...𝑁)) → ((𝐴 ∪ {〈𝑀, 𝐶〉}) ↾ (1...𝑁)) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi 8799 | . . . 4 ⊢ (𝐴 ∈ (𝐵 ↑m (1...𝑁)) → 𝐴:(1...𝑁)⟶𝐵) | |
| 2 | ffn 6670 | . . . 4 ⊢ (𝐴:(1...𝑁)⟶𝐵 → 𝐴 Fn (1...𝑁)) | |
| 3 | fnresdm 6619 | . . . 4 ⊢ (𝐴 Fn (1...𝑁) → (𝐴 ↾ (1...𝑁)) = 𝐴) | |
| 4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ (𝐴 ∈ (𝐵 ↑m (1...𝑁)) → (𝐴 ↾ (1...𝑁)) = 𝐴) |
| 5 | 4 | uneq1d 4126 | . 2 ⊢ (𝐴 ∈ (𝐵 ↑m (1...𝑁)) → ((𝐴 ↾ (1...𝑁)) ∪ ({〈𝑀, 𝐶〉} ↾ (1...𝑁))) = (𝐴 ∪ ({〈𝑀, 𝐶〉} ↾ (1...𝑁)))) |
| 6 | resundir 5954 | . 2 ⊢ ((𝐴 ∪ {〈𝑀, 𝐶〉}) ↾ (1...𝑁)) = ((𝐴 ↾ (1...𝑁)) ∪ ({〈𝑀, 𝐶〉} ↾ (1...𝑁))) | |
| 7 | dmres 5972 | . . . . . 6 ⊢ dom ({〈𝑀, 𝐶〉} ↾ (1...𝑁)) = ((1...𝑁) ∩ dom {〈𝑀, 𝐶〉}) | |
| 8 | dmsnopss 6175 | . . . . . . . . 9 ⊢ dom {〈𝑀, 𝐶〉} ⊆ {𝑀} | |
| 9 | mapfzcons.1 | . . . . . . . . . 10 ⊢ 𝑀 = (𝑁 + 1) | |
| 10 | 9 | sneqi 4596 | . . . . . . . . 9 ⊢ {𝑀} = {(𝑁 + 1)} |
| 11 | 8, 10 | sseqtri 3992 | . . . . . . . 8 ⊢ dom {〈𝑀, 𝐶〉} ⊆ {(𝑁 + 1)} |
| 12 | sslin 4202 | . . . . . . . 8 ⊢ (dom {〈𝑀, 𝐶〉} ⊆ {(𝑁 + 1)} → ((1...𝑁) ∩ dom {〈𝑀, 𝐶〉}) ⊆ ((1...𝑁) ∩ {(𝑁 + 1)})) | |
| 13 | 11, 12 | ax-mp 5 | . . . . . . 7 ⊢ ((1...𝑁) ∩ dom {〈𝑀, 𝐶〉}) ⊆ ((1...𝑁) ∩ {(𝑁 + 1)}) |
| 14 | fzp1disj 13520 | . . . . . . 7 ⊢ ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅ | |
| 15 | sseq0 4362 | . . . . . . 7 ⊢ ((((1...𝑁) ∩ dom {〈𝑀, 𝐶〉}) ⊆ ((1...𝑁) ∩ {(𝑁 + 1)}) ∧ ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅) → ((1...𝑁) ∩ dom {〈𝑀, 𝐶〉}) = ∅) | |
| 16 | 13, 14, 15 | mp2an 692 | . . . . . 6 ⊢ ((1...𝑁) ∩ dom {〈𝑀, 𝐶〉}) = ∅ |
| 17 | 7, 16 | eqtri 2752 | . . . . 5 ⊢ dom ({〈𝑀, 𝐶〉} ↾ (1...𝑁)) = ∅ |
| 18 | relres 5965 | . . . . . 6 ⊢ Rel ({〈𝑀, 𝐶〉} ↾ (1...𝑁)) | |
| 19 | reldm0 5881 | . . . . . 6 ⊢ (Rel ({〈𝑀, 𝐶〉} ↾ (1...𝑁)) → (({〈𝑀, 𝐶〉} ↾ (1...𝑁)) = ∅ ↔ dom ({〈𝑀, 𝐶〉} ↾ (1...𝑁)) = ∅)) | |
| 20 | 18, 19 | ax-mp 5 | . . . . 5 ⊢ (({〈𝑀, 𝐶〉} ↾ (1...𝑁)) = ∅ ↔ dom ({〈𝑀, 𝐶〉} ↾ (1...𝑁)) = ∅) |
| 21 | 17, 20 | mpbir 231 | . . . 4 ⊢ ({〈𝑀, 𝐶〉} ↾ (1...𝑁)) = ∅ |
| 22 | 21 | uneq2i 4124 | . . 3 ⊢ (𝐴 ∪ ({〈𝑀, 𝐶〉} ↾ (1...𝑁))) = (𝐴 ∪ ∅) |
| 23 | un0 4353 | . . 3 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
| 24 | 22, 23 | eqtr2i 2753 | . 2 ⊢ 𝐴 = (𝐴 ∪ ({〈𝑀, 𝐶〉} ↾ (1...𝑁))) |
| 25 | 5, 6, 24 | 3eqtr4g 2789 | 1 ⊢ (𝐴 ∈ (𝐵 ↑m (1...𝑁)) → ((𝐴 ∪ {〈𝑀, 𝐶〉}) ↾ (1...𝑁)) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∪ cun 3909 ∩ cin 3910 ⊆ wss 3911 ∅c0 4292 {csn 4585 〈cop 4591 dom cdm 5631 ↾ cres 5633 Rel wrel 5636 Fn wfn 6494 ⟶wf 6495 (class class class)co 7369 ↑m cmap 8776 1c1 11045 + caddc 11047 ...cfz 13444 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-z 12506 df-uz 12770 df-fz 13445 |
| This theorem is referenced by: rexrabdioph 42775 |
| Copyright terms: Public domain | W3C validator |