Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapfzcons1 Structured version   Visualization version   GIF version

Theorem mapfzcons1 40734
Description: Recover prefix mapping from an extended mapping. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.)
Hypothesis
Ref Expression
mapfzcons.1 𝑀 = (𝑁 + 1)
Assertion
Ref Expression
mapfzcons1 (𝐴 ∈ (𝐵m (1...𝑁)) → ((𝐴 ∪ {⟨𝑀, 𝐶⟩}) ↾ (1...𝑁)) = 𝐴)

Proof of Theorem mapfzcons1
StepHypRef Expression
1 elmapi 8668 . . . 4 (𝐴 ∈ (𝐵m (1...𝑁)) → 𝐴:(1...𝑁)⟶𝐵)
2 ffn 6630 . . . 4 (𝐴:(1...𝑁)⟶𝐵𝐴 Fn (1...𝑁))
3 fnresdm 6582 . . . 4 (𝐴 Fn (1...𝑁) → (𝐴 ↾ (1...𝑁)) = 𝐴)
41, 2, 33syl 18 . . 3 (𝐴 ∈ (𝐵m (1...𝑁)) → (𝐴 ↾ (1...𝑁)) = 𝐴)
54uneq1d 4102 . 2 (𝐴 ∈ (𝐵m (1...𝑁)) → ((𝐴 ↾ (1...𝑁)) ∪ ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁))) = (𝐴 ∪ ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁))))
6 resundir 5918 . 2 ((𝐴 ∪ {⟨𝑀, 𝐶⟩}) ↾ (1...𝑁)) = ((𝐴 ↾ (1...𝑁)) ∪ ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)))
7 dmres 5925 . . . . . 6 dom ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)) = ((1...𝑁) ∩ dom {⟨𝑀, 𝐶⟩})
8 dmsnopss 6132 . . . . . . . . 9 dom {⟨𝑀, 𝐶⟩} ⊆ {𝑀}
9 mapfzcons.1 . . . . . . . . . 10 𝑀 = (𝑁 + 1)
109sneqi 4576 . . . . . . . . 9 {𝑀} = {(𝑁 + 1)}
118, 10sseqtri 3962 . . . . . . . 8 dom {⟨𝑀, 𝐶⟩} ⊆ {(𝑁 + 1)}
12 sslin 4174 . . . . . . . 8 (dom {⟨𝑀, 𝐶⟩} ⊆ {(𝑁 + 1)} → ((1...𝑁) ∩ dom {⟨𝑀, 𝐶⟩}) ⊆ ((1...𝑁) ∩ {(𝑁 + 1)}))
1311, 12ax-mp 5 . . . . . . 7 ((1...𝑁) ∩ dom {⟨𝑀, 𝐶⟩}) ⊆ ((1...𝑁) ∩ {(𝑁 + 1)})
14 fzp1disj 13365 . . . . . . 7 ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅
15 sseq0 4339 . . . . . . 7 ((((1...𝑁) ∩ dom {⟨𝑀, 𝐶⟩}) ⊆ ((1...𝑁) ∩ {(𝑁 + 1)}) ∧ ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅) → ((1...𝑁) ∩ dom {⟨𝑀, 𝐶⟩}) = ∅)
1613, 14, 15mp2an 690 . . . . . 6 ((1...𝑁) ∩ dom {⟨𝑀, 𝐶⟩}) = ∅
177, 16eqtri 2764 . . . . 5 dom ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)) = ∅
18 relres 5932 . . . . . 6 Rel ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁))
19 reldm0 5849 . . . . . 6 (Rel ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)) → (({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)) = ∅ ↔ dom ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)) = ∅))
2018, 19ax-mp 5 . . . . 5 (({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)) = ∅ ↔ dom ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)) = ∅)
2117, 20mpbir 230 . . . 4 ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)) = ∅
2221uneq2i 4100 . . 3 (𝐴 ∪ ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁))) = (𝐴 ∪ ∅)
23 un0 4330 . . 3 (𝐴 ∪ ∅) = 𝐴
2422, 23eqtr2i 2765 . 2 𝐴 = (𝐴 ∪ ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)))
255, 6, 243eqtr4g 2801 1 (𝐴 ∈ (𝐵m (1...𝑁)) → ((𝐴 ∪ {⟨𝑀, 𝐶⟩}) ↾ (1...𝑁)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2104  cun 3890  cin 3891  wss 3892  c0 4262  {csn 4565  cop 4571  dom cdm 5600  cres 5602  Rel wrel 5605   Fn wfn 6453  wf 6454  (class class class)co 7307  m cmap 8646  1c1 10922   + caddc 10924  ...cfz 13289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10977  ax-resscn 10978  ax-1cn 10979  ax-icn 10980  ax-addcl 10981  ax-addrcl 10982  ax-mulcl 10983  ax-mulrcl 10984  ax-mulcom 10985  ax-addass 10986  ax-mulass 10987  ax-distr 10988  ax-i2m1 10989  ax-1ne0 10990  ax-1rid 10991  ax-rnegex 10992  ax-rrecex 10993  ax-cnre 10994  ax-pre-lttri 10995  ax-pre-lttrn 10996  ax-pre-ltadd 10997  ax-pre-mulgt0 10998
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-po 5514  df-so 5515  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-1st 7863  df-2nd 7864  df-er 8529  df-map 8648  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11061  df-mnf 11062  df-xr 11063  df-ltxr 11064  df-le 11065  df-sub 11257  df-neg 11258  df-z 12370  df-uz 12633  df-fz 13290
This theorem is referenced by:  rexrabdioph  40811
  Copyright terms: Public domain W3C validator