![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapfzcons1 | Structured version Visualization version GIF version |
Description: Recover prefix mapping from an extended mapping. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
Ref | Expression |
---|---|
mapfzcons.1 | ⊢ 𝑀 = (𝑁 + 1) |
Ref | Expression |
---|---|
mapfzcons1 | ⊢ (𝐴 ∈ (𝐵 ↑m (1...𝑁)) → ((𝐴 ∪ {⟨𝑀, 𝐶⟩}) ↾ (1...𝑁)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 8839 | . . . 4 ⊢ (𝐴 ∈ (𝐵 ↑m (1...𝑁)) → 𝐴:(1...𝑁)⟶𝐵) | |
2 | ffn 6707 | . . . 4 ⊢ (𝐴:(1...𝑁)⟶𝐵 → 𝐴 Fn (1...𝑁)) | |
3 | fnresdm 6659 | . . . 4 ⊢ (𝐴 Fn (1...𝑁) → (𝐴 ↾ (1...𝑁)) = 𝐴) | |
4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ (𝐴 ∈ (𝐵 ↑m (1...𝑁)) → (𝐴 ↾ (1...𝑁)) = 𝐴) |
5 | 4 | uneq1d 4154 | . 2 ⊢ (𝐴 ∈ (𝐵 ↑m (1...𝑁)) → ((𝐴 ↾ (1...𝑁)) ∪ ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁))) = (𝐴 ∪ ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)))) |
6 | resundir 5986 | . 2 ⊢ ((𝐴 ∪ {⟨𝑀, 𝐶⟩}) ↾ (1...𝑁)) = ((𝐴 ↾ (1...𝑁)) ∪ ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁))) | |
7 | dmres 5993 | . . . . . 6 ⊢ dom ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)) = ((1...𝑁) ∩ dom {⟨𝑀, 𝐶⟩}) | |
8 | dmsnopss 6203 | . . . . . . . . 9 ⊢ dom {⟨𝑀, 𝐶⟩} ⊆ {𝑀} | |
9 | mapfzcons.1 | . . . . . . . . . 10 ⊢ 𝑀 = (𝑁 + 1) | |
10 | 9 | sneqi 4631 | . . . . . . . . 9 ⊢ {𝑀} = {(𝑁 + 1)} |
11 | 8, 10 | sseqtri 4010 | . . . . . . . 8 ⊢ dom {⟨𝑀, 𝐶⟩} ⊆ {(𝑁 + 1)} |
12 | sslin 4226 | . . . . . . . 8 ⊢ (dom {⟨𝑀, 𝐶⟩} ⊆ {(𝑁 + 1)} → ((1...𝑁) ∩ dom {⟨𝑀, 𝐶⟩}) ⊆ ((1...𝑁) ∩ {(𝑁 + 1)})) | |
13 | 11, 12 | ax-mp 5 | . . . . . . 7 ⊢ ((1...𝑁) ∩ dom {⟨𝑀, 𝐶⟩}) ⊆ ((1...𝑁) ∩ {(𝑁 + 1)}) |
14 | fzp1disj 13557 | . . . . . . 7 ⊢ ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅ | |
15 | sseq0 4391 | . . . . . . 7 ⊢ ((((1...𝑁) ∩ dom {⟨𝑀, 𝐶⟩}) ⊆ ((1...𝑁) ∩ {(𝑁 + 1)}) ∧ ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅) → ((1...𝑁) ∩ dom {⟨𝑀, 𝐶⟩}) = ∅) | |
16 | 13, 14, 15 | mp2an 689 | . . . . . 6 ⊢ ((1...𝑁) ∩ dom {⟨𝑀, 𝐶⟩}) = ∅ |
17 | 7, 16 | eqtri 2752 | . . . . 5 ⊢ dom ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)) = ∅ |
18 | relres 6000 | . . . . . 6 ⊢ Rel ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)) | |
19 | reldm0 5917 | . . . . . 6 ⊢ (Rel ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)) → (({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)) = ∅ ↔ dom ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)) = ∅)) | |
20 | 18, 19 | ax-mp 5 | . . . . 5 ⊢ (({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)) = ∅ ↔ dom ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)) = ∅) |
21 | 17, 20 | mpbir 230 | . . . 4 ⊢ ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁)) = ∅ |
22 | 21 | uneq2i 4152 | . . 3 ⊢ (𝐴 ∪ ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁))) = (𝐴 ∪ ∅) |
23 | un0 4382 | . . 3 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
24 | 22, 23 | eqtr2i 2753 | . 2 ⊢ 𝐴 = (𝐴 ∪ ({⟨𝑀, 𝐶⟩} ↾ (1...𝑁))) |
25 | 5, 6, 24 | 3eqtr4g 2789 | 1 ⊢ (𝐴 ∈ (𝐵 ↑m (1...𝑁)) → ((𝐴 ∪ {⟨𝑀, 𝐶⟩}) ↾ (1...𝑁)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 ∪ cun 3938 ∩ cin 3939 ⊆ wss 3940 ∅c0 4314 {csn 4620 ⟨cop 4626 dom cdm 5666 ↾ cres 5668 Rel wrel 5671 Fn wfn 6528 ⟶wf 6529 (class class class)co 7401 ↑m cmap 8816 1c1 11107 + caddc 11109 ...cfz 13481 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-po 5578 df-so 5579 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-1st 7968 df-2nd 7969 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-z 12556 df-uz 12820 df-fz 13482 |
This theorem is referenced by: rexrabdioph 42021 |
Copyright terms: Public domain | W3C validator |