![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-fununsn1 | Structured version Visualization version GIF version |
Description: Value of a function expressed as a union of a function and a singleton on a couple (with disjoint domain) at a point not equal to the first component of that couple. (Contributed by BJ, 18-Mar-2023.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-fununsn.un | ⊢ (𝜑 → 𝐹 = (𝐺 ∪ {⟨𝐵, 𝐶⟩})) |
bj-fununsn1.neq | ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
Ref | Expression |
---|---|
bj-fununsn1 | ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-fununsn.un | . 2 ⊢ (𝜑 → 𝐹 = (𝐺 ∪ {⟨𝐵, 𝐶⟩})) | |
2 | dmsnopss 6212 | . . . 4 ⊢ dom {⟨𝐵, 𝐶⟩} ⊆ {𝐵} | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → dom {⟨𝐵, 𝐶⟩} ⊆ {𝐵}) |
4 | bj-fununsn1.neq | . . . 4 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) | |
5 | elsni 4641 | . . . 4 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) | |
6 | 4, 5 | nsyl 140 | . . 3 ⊢ (𝜑 → ¬ 𝐴 ∈ {𝐵}) |
7 | 3, 6 | ssneldd 3981 | . 2 ⊢ (𝜑 → ¬ 𝐴 ∈ dom {⟨𝐵, 𝐶⟩}) |
8 | 1, 7 | bj-funun 36654 | 1 ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1534 ∈ wcel 2099 ∪ cun 3942 ⊆ wss 3944 {csn 4624 ⟨cop 4630 dom cdm 5672 ‘cfv 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-xp 5678 df-cnv 5680 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fv 6550 |
This theorem is referenced by: bj-fvsnun1 36657 bj-fvmptunsn2 36660 |
Copyright terms: Public domain | W3C validator |