Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-fununsn1 Structured version   Visualization version   GIF version

Theorem bj-fununsn1 35351
Description: Value of a function expressed as a union of a function and a singleton on a couple (with disjoint domain) at a point not equal to the first component of that couple. (Contributed by BJ, 18-Mar-2023.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-fununsn.un (𝜑𝐹 = (𝐺 ∪ {⟨𝐵, 𝐶⟩}))
bj-fununsn1.neq (𝜑 → ¬ 𝐴 = 𝐵)
Assertion
Ref Expression
bj-fununsn1 (𝜑 → (𝐹𝐴) = (𝐺𝐴))

Proof of Theorem bj-fununsn1
StepHypRef Expression
1 bj-fununsn.un . 2 (𝜑𝐹 = (𝐺 ∪ {⟨𝐵, 𝐶⟩}))
2 dmsnopss 6106 . . . 4 dom {⟨𝐵, 𝐶⟩} ⊆ {𝐵}
32a1i 11 . . 3 (𝜑 → dom {⟨𝐵, 𝐶⟩} ⊆ {𝐵})
4 bj-fununsn1.neq . . . 4 (𝜑 → ¬ 𝐴 = 𝐵)
5 elsni 4575 . . . 4 (𝐴 ∈ {𝐵} → 𝐴 = 𝐵)
64, 5nsyl 140 . . 3 (𝜑 → ¬ 𝐴 ∈ {𝐵})
73, 6ssneldd 3920 . 2 (𝜑 → ¬ 𝐴 ∈ dom {⟨𝐵, 𝐶⟩})
81, 7bj-funun 35350 1 (𝜑 → (𝐹𝐴) = (𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2108  cun 3881  wss 3883  {csn 4558  cop 4564  dom cdm 5580  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fv 6426
This theorem is referenced by:  bj-fvsnun1  35353  bj-fvmptunsn2  35356
  Copyright terms: Public domain W3C validator