| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-fununsn1 | Structured version Visualization version GIF version | ||
| Description: Value of a function expressed as a union of a function and a singleton on a couple (with disjoint domain) at a point not equal to the first component of that couple. (Contributed by BJ, 18-Mar-2023.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-fununsn.un | ⊢ (𝜑 → 𝐹 = (𝐺 ∪ {〈𝐵, 𝐶〉})) |
| bj-fununsn1.neq | ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| bj-fununsn1 | ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-fununsn.un | . 2 ⊢ (𝜑 → 𝐹 = (𝐺 ∪ {〈𝐵, 𝐶〉})) | |
| 2 | dmsnopss 6161 | . . . 4 ⊢ dom {〈𝐵, 𝐶〉} ⊆ {𝐵} | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → dom {〈𝐵, 𝐶〉} ⊆ {𝐵}) |
| 4 | bj-fununsn1.neq | . . . 4 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) | |
| 5 | elsni 4590 | . . . 4 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) | |
| 6 | 4, 5 | nsyl 140 | . . 3 ⊢ (𝜑 → ¬ 𝐴 ∈ {𝐵}) |
| 7 | 3, 6 | ssneldd 3932 | . 2 ⊢ (𝜑 → ¬ 𝐴 ∈ dom {〈𝐵, 𝐶〉}) |
| 8 | 1, 7 | bj-funun 37296 | 1 ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 ∪ cun 3895 ⊆ wss 3897 {csn 4573 〈cop 4579 dom cdm 5614 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fv 6489 |
| This theorem is referenced by: bj-fvsnun1 37299 bj-fvmptunsn2 37302 |
| Copyright terms: Public domain | W3C validator |