Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-fununsn1 Structured version   Visualization version   GIF version

Theorem bj-fununsn1 35424
Description: Value of a function expressed as a union of a function and a singleton on a couple (with disjoint domain) at a point not equal to the first component of that couple. (Contributed by BJ, 18-Mar-2023.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-fununsn.un (𝜑𝐹 = (𝐺 ∪ {⟨𝐵, 𝐶⟩}))
bj-fununsn1.neq (𝜑 → ¬ 𝐴 = 𝐵)
Assertion
Ref Expression
bj-fununsn1 (𝜑 → (𝐹𝐴) = (𝐺𝐴))

Proof of Theorem bj-fununsn1
StepHypRef Expression
1 bj-fununsn.un . 2 (𝜑𝐹 = (𝐺 ∪ {⟨𝐵, 𝐶⟩}))
2 dmsnopss 6117 . . . 4 dom {⟨𝐵, 𝐶⟩} ⊆ {𝐵}
32a1i 11 . . 3 (𝜑 → dom {⟨𝐵, 𝐶⟩} ⊆ {𝐵})
4 bj-fununsn1.neq . . . 4 (𝜑 → ¬ 𝐴 = 𝐵)
5 elsni 4578 . . . 4 (𝐴 ∈ {𝐵} → 𝐴 = 𝐵)
64, 5nsyl 140 . . 3 (𝜑 → ¬ 𝐴 ∈ {𝐵})
73, 6ssneldd 3924 . 2 (𝜑 → ¬ 𝐴 ∈ dom {⟨𝐵, 𝐶⟩})
81, 7bj-funun 35423 1 (𝜑 → (𝐹𝐴) = (𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2106  cun 3885  wss 3887  {csn 4561  cop 4567  dom cdm 5589  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fv 6441
This theorem is referenced by:  bj-fvsnun1  35426  bj-fvmptunsn2  35429
  Copyright terms: Public domain W3C validator