Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-fununsn1 Structured version   Visualization version   GIF version

Theorem bj-fununsn1 36655
Description: Value of a function expressed as a union of a function and a singleton on a couple (with disjoint domain) at a point not equal to the first component of that couple. (Contributed by BJ, 18-Mar-2023.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-fununsn.un (𝜑𝐹 = (𝐺 ∪ {⟨𝐵, 𝐶⟩}))
bj-fununsn1.neq (𝜑 → ¬ 𝐴 = 𝐵)
Assertion
Ref Expression
bj-fununsn1 (𝜑 → (𝐹𝐴) = (𝐺𝐴))

Proof of Theorem bj-fununsn1
StepHypRef Expression
1 bj-fununsn.un . 2 (𝜑𝐹 = (𝐺 ∪ {⟨𝐵, 𝐶⟩}))
2 dmsnopss 6212 . . . 4 dom {⟨𝐵, 𝐶⟩} ⊆ {𝐵}
32a1i 11 . . 3 (𝜑 → dom {⟨𝐵, 𝐶⟩} ⊆ {𝐵})
4 bj-fununsn1.neq . . . 4 (𝜑 → ¬ 𝐴 = 𝐵)
5 elsni 4641 . . . 4 (𝐴 ∈ {𝐵} → 𝐴 = 𝐵)
64, 5nsyl 140 . . 3 (𝜑 → ¬ 𝐴 ∈ {𝐵})
73, 6ssneldd 3981 . 2 (𝜑 → ¬ 𝐴 ∈ dom {⟨𝐵, 𝐶⟩})
81, 7bj-funun 36654 1 (𝜑 → (𝐹𝐴) = (𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1534  wcel 2099  cun 3942  wss 3944  {csn 4624  cop 4630  dom cdm 5672  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-xp 5678  df-cnv 5680  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fv 6550
This theorem is referenced by:  bj-fvsnun1  36657  bj-fvmptunsn2  36660
  Copyright terms: Public domain W3C validator