Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-fununsn1 Structured version   Visualization version   GIF version

Theorem bj-fununsn1 37271
Description: Value of a function expressed as a union of a function and a singleton on a couple (with disjoint domain) at a point not equal to the first component of that couple. (Contributed by BJ, 18-Mar-2023.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-fununsn.un (𝜑𝐹 = (𝐺 ∪ {⟨𝐵, 𝐶⟩}))
bj-fununsn1.neq (𝜑 → ¬ 𝐴 = 𝐵)
Assertion
Ref Expression
bj-fununsn1 (𝜑 → (𝐹𝐴) = (𝐺𝐴))

Proof of Theorem bj-fununsn1
StepHypRef Expression
1 bj-fununsn.un . 2 (𝜑𝐹 = (𝐺 ∪ {⟨𝐵, 𝐶⟩}))
2 dmsnopss 6203 . . . 4 dom {⟨𝐵, 𝐶⟩} ⊆ {𝐵}
32a1i 11 . . 3 (𝜑 → dom {⟨𝐵, 𝐶⟩} ⊆ {𝐵})
4 bj-fununsn1.neq . . . 4 (𝜑 → ¬ 𝐴 = 𝐵)
5 elsni 4618 . . . 4 (𝐴 ∈ {𝐵} → 𝐴 = 𝐵)
64, 5nsyl 140 . . 3 (𝜑 → ¬ 𝐴 ∈ {𝐵})
73, 6ssneldd 3961 . 2 (𝜑 → ¬ 𝐴 ∈ dom {⟨𝐵, 𝐶⟩})
81, 7bj-funun 37270 1 (𝜑 → (𝐹𝐴) = (𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2108  cun 3924  wss 3926  {csn 4601  cop 4607  dom cdm 5654  cfv 6531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-xp 5660  df-cnv 5662  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fv 6539
This theorem is referenced by:  bj-fvsnun1  37273  bj-fvmptunsn2  37276
  Copyright terms: Public domain W3C validator