Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eceldmqsxrncnvepres Structured version   Visualization version   GIF version

Theorem eceldmqsxrncnvepres 38371
Description: An (𝑅 ⋉ (' E | 𝐴))-coset in its domain quotient. (Contributed by Peter Mazsa, 23-Nov-2025.)
Assertion
Ref Expression
eceldmqsxrncnvepres ((𝐴𝑉𝐵𝑊𝑅𝑋) → ([𝐵](𝑅 ⋉ ( E ↾ 𝐴)) ∈ (dom (𝑅 ⋉ ( E ↾ 𝐴)) / (𝑅 ⋉ ( E ↾ 𝐴))) ↔ (𝐵𝐴𝐵 ≠ ∅ ∧ [𝐵]𝑅 ≠ ∅)))

Proof of Theorem eceldmqsxrncnvepres
StepHypRef Expression
1 xrncnvepresex 38367 . . . 4 ((𝐴𝑉𝑅𝑋) → (𝑅 ⋉ ( E ↾ 𝐴)) ∈ V)
2 eceldmqs 8737 . . . 4 ((𝑅 ⋉ ( E ↾ 𝐴)) ∈ V → ([𝐵](𝑅 ⋉ ( E ↾ 𝐴)) ∈ (dom (𝑅 ⋉ ( E ↾ 𝐴)) / (𝑅 ⋉ ( E ↾ 𝐴))) ↔ 𝐵 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))))
31, 2syl 17 . . 3 ((𝐴𝑉𝑅𝑋) → ([𝐵](𝑅 ⋉ ( E ↾ 𝐴)) ∈ (dom (𝑅 ⋉ ( E ↾ 𝐴)) / (𝑅 ⋉ ( E ↾ 𝐴))) ↔ 𝐵 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))))
433adant2 1131 . 2 ((𝐴𝑉𝐵𝑊𝑅𝑋) → ([𝐵](𝑅 ⋉ ( E ↾ 𝐴)) ∈ (dom (𝑅 ⋉ ( E ↾ 𝐴)) / (𝑅 ⋉ ( E ↾ 𝐴))) ↔ 𝐵 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))))
5 eldmxrncnvepres 38369 . . 3 (𝐵𝑊 → (𝐵 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) ↔ (𝐵𝐴𝐵 ≠ ∅ ∧ [𝐵]𝑅 ≠ ∅)))
653ad2ant2 1134 . 2 ((𝐴𝑉𝐵𝑊𝑅𝑋) → (𝐵 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) ↔ (𝐵𝐴𝐵 ≠ ∅ ∧ [𝐵]𝑅 ≠ ∅)))
74, 6bitrd 279 1 ((𝐴𝑉𝐵𝑊𝑅𝑋) → ([𝐵](𝑅 ⋉ ( E ↾ 𝐴)) ∈ (dom (𝑅 ⋉ ( E ↾ 𝐴)) / (𝑅 ⋉ ( E ↾ 𝐴))) ↔ (𝐵𝐴𝐵 ≠ ∅ ∧ [𝐵]𝑅 ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  wne 2925  Vcvv 3444  c0 4292   E cep 5530  ccnv 5630  dom cdm 5631  cres 5633  [cec 8646   / cqs 8647  cxrn 38141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-eprel 5531  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fo 6505  df-fv 6507  df-oprab 7373  df-1st 7947  df-2nd 7948  df-ec 8650  df-qs 8654  df-xrn 38326
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator