Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eceldmqsxrncnvepres Structured version   Visualization version   GIF version

Theorem eceldmqsxrncnvepres 38444
Description: An (𝑅 ⋉ (' E | 𝐴))-coset in its domain quotient. (Contributed by Peter Mazsa, 23-Nov-2025.)
Assertion
Ref Expression
eceldmqsxrncnvepres ((𝐴𝑉𝐵𝑊𝑅𝑋) → ([𝐵](𝑅 ⋉ ( E ↾ 𝐴)) ∈ (dom (𝑅 ⋉ ( E ↾ 𝐴)) / (𝑅 ⋉ ( E ↾ 𝐴))) ↔ (𝐵𝐴𝐵 ≠ ∅ ∧ [𝐵]𝑅 ≠ ∅)))

Proof of Theorem eceldmqsxrncnvepres
StepHypRef Expression
1 xrncnvepresex 38440 . . . 4 ((𝐴𝑉𝑅𝑋) → (𝑅 ⋉ ( E ↾ 𝐴)) ∈ V)
2 eceldmqs 8706 . . . 4 ((𝑅 ⋉ ( E ↾ 𝐴)) ∈ V → ([𝐵](𝑅 ⋉ ( E ↾ 𝐴)) ∈ (dom (𝑅 ⋉ ( E ↾ 𝐴)) / (𝑅 ⋉ ( E ↾ 𝐴))) ↔ 𝐵 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))))
31, 2syl 17 . . 3 ((𝐴𝑉𝑅𝑋) → ([𝐵](𝑅 ⋉ ( E ↾ 𝐴)) ∈ (dom (𝑅 ⋉ ( E ↾ 𝐴)) / (𝑅 ⋉ ( E ↾ 𝐴))) ↔ 𝐵 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))))
433adant2 1131 . 2 ((𝐴𝑉𝐵𝑊𝑅𝑋) → ([𝐵](𝑅 ⋉ ( E ↾ 𝐴)) ∈ (dom (𝑅 ⋉ ( E ↾ 𝐴)) / (𝑅 ⋉ ( E ↾ 𝐴))) ↔ 𝐵 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))))
5 eldmxrncnvepres 38442 . . 3 (𝐵𝑊 → (𝐵 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) ↔ (𝐵𝐴𝐵 ≠ ∅ ∧ [𝐵]𝑅 ≠ ∅)))
653ad2ant2 1134 . 2 ((𝐴𝑉𝐵𝑊𝑅𝑋) → (𝐵 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) ↔ (𝐵𝐴𝐵 ≠ ∅ ∧ [𝐵]𝑅 ≠ ∅)))
74, 6bitrd 279 1 ((𝐴𝑉𝐵𝑊𝑅𝑋) → ([𝐵](𝑅 ⋉ ( E ↾ 𝐴)) ∈ (dom (𝑅 ⋉ ( E ↾ 𝐴)) / (𝑅 ⋉ ( E ↾ 𝐴))) ↔ (𝐵𝐴𝐵 ≠ ∅ ∧ [𝐵]𝑅 ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2111  wne 2928  Vcvv 3436  c0 4278   E cep 5510  ccnv 5610  dom cdm 5611  cres 5613  [cec 8615   / cqs 8616  cxrn 38214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-eprel 5511  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-fo 6482  df-fv 6484  df-oprab 7345  df-1st 7916  df-2nd 7917  df-ec 8619  df-qs 8623  df-xrn 38399
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator