| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eceldmqsxrncnvepres | Structured version Visualization version GIF version | ||
| Description: An (𝑅 ⋉ (' E | 𝐴))-coset in its domain quotient. (Contributed by Peter Mazsa, 23-Nov-2025.) |
| Ref | Expression |
|---|---|
| eceldmqsxrncnvepres | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋) → ([𝐵](𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ (dom (𝑅 ⋉ (◡ E ↾ 𝐴)) / (𝑅 ⋉ (◡ E ↾ 𝐴))) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ≠ ∅ ∧ [𝐵]𝑅 ≠ ∅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrncnvepresex 38380 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑋) → (𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ V) | |
| 2 | eceldmqs 8714 | . . . 4 ⊢ ((𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ V → ([𝐵](𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ (dom (𝑅 ⋉ (◡ E ↾ 𝐴)) / (𝑅 ⋉ (◡ E ↾ 𝐴))) ↔ 𝐵 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴)))) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑋) → ([𝐵](𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ (dom (𝑅 ⋉ (◡ E ↾ 𝐴)) / (𝑅 ⋉ (◡ E ↾ 𝐴))) ↔ 𝐵 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴)))) |
| 4 | 3 | 3adant2 1131 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋) → ([𝐵](𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ (dom (𝑅 ⋉ (◡ E ↾ 𝐴)) / (𝑅 ⋉ (◡ E ↾ 𝐴))) ↔ 𝐵 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴)))) |
| 5 | eldmxrncnvepres 38382 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (𝐵 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴)) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ≠ ∅ ∧ [𝐵]𝑅 ≠ ∅))) | |
| 6 | 5 | 3ad2ant2 1134 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋) → (𝐵 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴)) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ≠ ∅ ∧ [𝐵]𝑅 ≠ ∅))) |
| 7 | 4, 6 | bitrd 279 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋) → ([𝐵](𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ (dom (𝑅 ⋉ (◡ E ↾ 𝐴)) / (𝑅 ⋉ (◡ E ↾ 𝐴))) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ≠ ∅ ∧ [𝐵]𝑅 ≠ ∅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ≠ wne 2925 Vcvv 3436 ∅c0 4284 E cep 5518 ◡ccnv 5618 dom cdm 5619 ↾ cres 5621 [cec 8623 / cqs 8624 ⋉ cxrn 38154 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-eprel 5519 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fo 6488 df-fv 6490 df-oprab 7353 df-1st 7924 df-2nd 7925 df-ec 8627 df-qs 8631 df-xrn 38339 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |