Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eceldmqsxrncnvepres2 Structured version   Visualization version   GIF version

Theorem eceldmqsxrncnvepres2 38534
Description: An (𝑅 ⋉ ( E ↾ 𝐴))-coset in its domain quotient. In the pet 39022 span (𝑅 ⋉ ( E ↾ 𝐴)), a block [ B ] lies in the domain quotient exactly when its representative 𝐵 belongs to 𝐴 and actually fires at least one arrow (has some 𝑥𝐵 and some 𝑦 with 𝐵𝑅𝑦). (Contributed by Peter Mazsa, 23-Nov-2025.)
Assertion
Ref Expression
eceldmqsxrncnvepres2 ((𝐴𝑉𝐵𝑊𝑅𝑋) → ([𝐵](𝑅 ⋉ ( E ↾ 𝐴)) ∈ (dom (𝑅 ⋉ ( E ↾ 𝐴)) / (𝑅 ⋉ ( E ↾ 𝐴))) ↔ (𝐵𝐴 ∧ ∃𝑥 𝑥𝐵 ∧ ∃𝑦 𝐵𝑅𝑦)))
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝑦,𝐵   𝑦,𝑅
Allowed substitution hints:   𝐴(𝑥)   𝑅(𝑥)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem eceldmqsxrncnvepres2
StepHypRef Expression
1 xrncnvepresex 38528 . . . 4 ((𝐴𝑉𝑅𝑋) → (𝑅 ⋉ ( E ↾ 𝐴)) ∈ V)
2 eceldmqs 8720 . . . 4 ((𝑅 ⋉ ( E ↾ 𝐴)) ∈ V → ([𝐵](𝑅 ⋉ ( E ↾ 𝐴)) ∈ (dom (𝑅 ⋉ ( E ↾ 𝐴)) / (𝑅 ⋉ ( E ↾ 𝐴))) ↔ 𝐵 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))))
31, 2syl 17 . . 3 ((𝐴𝑉𝑅𝑋) → ([𝐵](𝑅 ⋉ ( E ↾ 𝐴)) ∈ (dom (𝑅 ⋉ ( E ↾ 𝐴)) / (𝑅 ⋉ ( E ↾ 𝐴))) ↔ 𝐵 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))))
433adant2 1131 . 2 ((𝐴𝑉𝐵𝑊𝑅𝑋) → ([𝐵](𝑅 ⋉ ( E ↾ 𝐴)) ∈ (dom (𝑅 ⋉ ( E ↾ 𝐴)) / (𝑅 ⋉ ( E ↾ 𝐴))) ↔ 𝐵 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴))))
5 eldmxrncnvepres2 38532 . . 3 (𝐵𝑊 → (𝐵 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) ↔ (𝐵𝐴 ∧ ∃𝑥 𝑥𝐵 ∧ ∃𝑦 𝐵𝑅𝑦)))
653ad2ant2 1134 . 2 ((𝐴𝑉𝐵𝑊𝑅𝑋) → (𝐵 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) ↔ (𝐵𝐴 ∧ ∃𝑥 𝑥𝐵 ∧ ∃𝑦 𝐵𝑅𝑦)))
74, 6bitrd 279 1 ((𝐴𝑉𝐵𝑊𝑅𝑋) → ([𝐵](𝑅 ⋉ ( E ↾ 𝐴)) ∈ (dom (𝑅 ⋉ ( E ↾ 𝐴)) / (𝑅 ⋉ ( E ↾ 𝐴))) ↔ (𝐵𝐴 ∧ ∃𝑥 𝑥𝐵 ∧ ∃𝑦 𝐵𝑅𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wex 1780  wcel 2113  Vcvv 3437   class class class wbr 5095   E cep 5520  ccnv 5620  dom cdm 5621  cres 5623  [cec 8629   / cqs 8630  cxrn 38287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-eprel 5521  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fo 6495  df-fv 6497  df-oprab 7359  df-1st 7930  df-2nd 7931  df-ec 8633  df-qs 8637  df-xrn 38477
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator