| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > el2xpss | Structured version Visualization version GIF version | ||
| Description: Version of elrel 5733 for triple Cartesian products. (Contributed by Scott Fenton, 1-Feb-2025.) |
| Ref | Expression |
|---|---|
| el2xpss | ⊢ ((𝐴 ∈ 𝑅 ∧ 𝑅 ⊆ ((𝐵 × 𝐶) × 𝐷)) → ∃𝑥∃𝑦∃𝑧 𝐴 = 〈𝑥, 𝑦, 𝑧〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel2 3924 | . . 3 ⊢ ((𝑅 ⊆ ((𝐵 × 𝐶) × 𝐷) ∧ 𝐴 ∈ 𝑅) → 𝐴 ∈ ((𝐵 × 𝐶) × 𝐷)) | |
| 2 | 1 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝑅 ⊆ ((𝐵 × 𝐶) × 𝐷)) → 𝐴 ∈ ((𝐵 × 𝐶) × 𝐷)) |
| 3 | el2xptp 7962 | . . 3 ⊢ (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = 〈𝑥, 𝑦, 𝑧〉) | |
| 4 | rexex 3062 | . . . . . . 7 ⊢ (∃𝑧 ∈ 𝐷 𝐴 = 〈𝑥, 𝑦, 𝑧〉 → ∃𝑧 𝐴 = 〈𝑥, 𝑦, 𝑧〉) | |
| 5 | 4 | reximi 3070 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = 〈𝑥, 𝑦, 𝑧〉 → ∃𝑦 ∈ 𝐶 ∃𝑧 𝐴 = 〈𝑥, 𝑦, 𝑧〉) |
| 6 | rexex 3062 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐶 ∃𝑧 𝐴 = 〈𝑥, 𝑦, 𝑧〉 → ∃𝑦∃𝑧 𝐴 = 〈𝑥, 𝑦, 𝑧〉) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ (∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = 〈𝑥, 𝑦, 𝑧〉 → ∃𝑦∃𝑧 𝐴 = 〈𝑥, 𝑦, 𝑧〉) |
| 8 | 7 | reximi 3070 | . . . 4 ⊢ (∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = 〈𝑥, 𝑦, 𝑧〉 → ∃𝑥 ∈ 𝐵 ∃𝑦∃𝑧 𝐴 = 〈𝑥, 𝑦, 𝑧〉) |
| 9 | rexex 3062 | . . . 4 ⊢ (∃𝑥 ∈ 𝐵 ∃𝑦∃𝑧 𝐴 = 〈𝑥, 𝑦, 𝑧〉 → ∃𝑥∃𝑦∃𝑧 𝐴 = 〈𝑥, 𝑦, 𝑧〉) | |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = 〈𝑥, 𝑦, 𝑧〉 → ∃𝑥∃𝑦∃𝑧 𝐴 = 〈𝑥, 𝑦, 𝑧〉) |
| 11 | 3, 10 | sylbi 217 | . 2 ⊢ (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) → ∃𝑥∃𝑦∃𝑧 𝐴 = 〈𝑥, 𝑦, 𝑧〉) |
| 12 | 2, 11 | syl 17 | 1 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝑅 ⊆ ((𝐵 × 𝐶) × 𝐷)) → ∃𝑥∃𝑦∃𝑧 𝐴 = 〈𝑥, 𝑦, 𝑧〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∃wrex 3056 ⊆ wss 3897 〈cotp 4579 × cxp 5609 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-ot 4580 df-iun 4938 df-opab 5149 df-xp 5617 df-rel 5618 |
| This theorem is referenced by: frxp3 8076 |
| Copyright terms: Public domain | W3C validator |