MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  el2xpss Structured version   Visualization version   GIF version

Theorem el2xpss 8019
Description: Version of elrel 5791 for triple Cartesian products. (Contributed by Scott Fenton, 1-Feb-2025.)
Assertion
Ref Expression
el2xpss ((𝐴𝑅𝑅 ⊆ ((𝐵 × 𝐶) × 𝐷)) → ∃𝑥𝑦𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐷,𝑦,𝑧
Allowed substitution hints:   𝑅(𝑥,𝑦,𝑧)

Proof of Theorem el2xpss
StepHypRef Expression
1 ssel2 3972 . . 3 ((𝑅 ⊆ ((𝐵 × 𝐶) × 𝐷) ∧ 𝐴𝑅) → 𝐴 ∈ ((𝐵 × 𝐶) × 𝐷))
21ancoms 458 . 2 ((𝐴𝑅𝑅 ⊆ ((𝐵 × 𝐶) × 𝐷)) → 𝐴 ∈ ((𝐵 × 𝐶) × 𝐷))
3 el2xptp 8017 . . 3 (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) ↔ ∃𝑥𝐵𝑦𝐶𝑧𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
4 rexex 3070 . . . . . . 7 (∃𝑧𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ∃𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
54reximi 3078 . . . . . 6 (∃𝑦𝐶𝑧𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ∃𝑦𝐶𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
6 rexex 3070 . . . . . 6 (∃𝑦𝐶𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ∃𝑦𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
75, 6syl 17 . . . . 5 (∃𝑦𝐶𝑧𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ∃𝑦𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
87reximi 3078 . . . 4 (∃𝑥𝐵𝑦𝐶𝑧𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ∃𝑥𝐵𝑦𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
9 rexex 3070 . . . 4 (∃𝑥𝐵𝑦𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ∃𝑥𝑦𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
108, 9syl 17 . . 3 (∃𝑥𝐵𝑦𝐶𝑧𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ∃𝑥𝑦𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
113, 10sylbi 216 . 2 (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) → ∃𝑥𝑦𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
122, 11syl 17 1 ((𝐴𝑅𝑅 ⊆ ((𝐵 × 𝐶) × 𝐷)) → ∃𝑥𝑦𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wex 1773  wcel 2098  wrex 3064  wss 3943  cotp 4631   × cxp 5667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-ot 4632  df-iun 4992  df-opab 5204  df-xp 5675  df-rel 5676
This theorem is referenced by:  frxp3  8134
  Copyright terms: Public domain W3C validator