![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > el2xpss | Structured version Visualization version GIF version |
Description: Version of elrel 5791 for triple Cartesian products. (Contributed by Scott Fenton, 1-Feb-2025.) |
Ref | Expression |
---|---|
el2xpss | ⊢ ((𝐴 ∈ 𝑅 ∧ 𝑅 ⊆ ((𝐵 × 𝐶) × 𝐷)) → ∃𝑥∃𝑦∃𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel2 3972 | . . 3 ⊢ ((𝑅 ⊆ ((𝐵 × 𝐶) × 𝐷) ∧ 𝐴 ∈ 𝑅) → 𝐴 ∈ ((𝐵 × 𝐶) × 𝐷)) | |
2 | 1 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝑅 ⊆ ((𝐵 × 𝐶) × 𝐷)) → 𝐴 ∈ ((𝐵 × 𝐶) × 𝐷)) |
3 | el2xptp 8017 | . . 3 ⊢ (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩) | |
4 | rexex 3070 | . . . . . . 7 ⊢ (∃𝑧 ∈ 𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ∃𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩) | |
5 | 4 | reximi 3078 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ∃𝑦 ∈ 𝐶 ∃𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩) |
6 | rexex 3070 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐶 ∃𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ∃𝑦∃𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ∃𝑦∃𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩) |
8 | 7 | reximi 3078 | . . . 4 ⊢ (∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ∃𝑥 ∈ 𝐵 ∃𝑦∃𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩) |
9 | rexex 3070 | . . . 4 ⊢ (∃𝑥 ∈ 𝐵 ∃𝑦∃𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ∃𝑥∃𝑦∃𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ∃𝑥∃𝑦∃𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩) |
11 | 3, 10 | sylbi 216 | . 2 ⊢ (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) → ∃𝑥∃𝑦∃𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩) |
12 | 2, 11 | syl 17 | 1 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝑅 ⊆ ((𝐵 × 𝐶) × 𝐷)) → ∃𝑥∃𝑦∃𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ∃wrex 3064 ⊆ wss 3943 ⟨cotp 4631 × cxp 5667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-ot 4632 df-iun 4992 df-opab 5204 df-xp 5675 df-rel 5676 |
This theorem is referenced by: frxp3 8134 |
Copyright terms: Public domain | W3C validator |