| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > el2xpss | Structured version Visualization version GIF version | ||
| Description: Version of elrel 5744 for triple Cartesian products. (Contributed by Scott Fenton, 1-Feb-2025.) |
| Ref | Expression |
|---|---|
| el2xpss | ⊢ ((𝐴 ∈ 𝑅 ∧ 𝑅 ⊆ ((𝐵 × 𝐶) × 𝐷)) → ∃𝑥∃𝑦∃𝑧 𝐴 = 〈𝑥, 𝑦, 𝑧〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel2 3925 | . . 3 ⊢ ((𝑅 ⊆ ((𝐵 × 𝐶) × 𝐷) ∧ 𝐴 ∈ 𝑅) → 𝐴 ∈ ((𝐵 × 𝐶) × 𝐷)) | |
| 2 | 1 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝑅 ⊆ ((𝐵 × 𝐶) × 𝐷)) → 𝐴 ∈ ((𝐵 × 𝐶) × 𝐷)) |
| 3 | el2xptp 7976 | . . 3 ⊢ (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = 〈𝑥, 𝑦, 𝑧〉) | |
| 4 | rexex 3063 | . . . . . . 7 ⊢ (∃𝑧 ∈ 𝐷 𝐴 = 〈𝑥, 𝑦, 𝑧〉 → ∃𝑧 𝐴 = 〈𝑥, 𝑦, 𝑧〉) | |
| 5 | 4 | reximi 3071 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = 〈𝑥, 𝑦, 𝑧〉 → ∃𝑦 ∈ 𝐶 ∃𝑧 𝐴 = 〈𝑥, 𝑦, 𝑧〉) |
| 6 | rexex 3063 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐶 ∃𝑧 𝐴 = 〈𝑥, 𝑦, 𝑧〉 → ∃𝑦∃𝑧 𝐴 = 〈𝑥, 𝑦, 𝑧〉) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ (∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = 〈𝑥, 𝑦, 𝑧〉 → ∃𝑦∃𝑧 𝐴 = 〈𝑥, 𝑦, 𝑧〉) |
| 8 | 7 | reximi 3071 | . . . 4 ⊢ (∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = 〈𝑥, 𝑦, 𝑧〉 → ∃𝑥 ∈ 𝐵 ∃𝑦∃𝑧 𝐴 = 〈𝑥, 𝑦, 𝑧〉) |
| 9 | rexex 3063 | . . . 4 ⊢ (∃𝑥 ∈ 𝐵 ∃𝑦∃𝑧 𝐴 = 〈𝑥, 𝑦, 𝑧〉 → ∃𝑥∃𝑦∃𝑧 𝐴 = 〈𝑥, 𝑦, 𝑧〉) | |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = 〈𝑥, 𝑦, 𝑧〉 → ∃𝑥∃𝑦∃𝑧 𝐴 = 〈𝑥, 𝑦, 𝑧〉) |
| 11 | 3, 10 | sylbi 217 | . 2 ⊢ (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) → ∃𝑥∃𝑦∃𝑧 𝐴 = 〈𝑥, 𝑦, 𝑧〉) |
| 12 | 2, 11 | syl 17 | 1 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝑅 ⊆ ((𝐵 × 𝐶) × 𝐷)) → ∃𝑥∃𝑦∃𝑧 𝐴 = 〈𝑥, 𝑦, 𝑧〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ∃wrex 3057 ⊆ wss 3898 〈cotp 4585 × cxp 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-ot 4586 df-iun 4945 df-opab 5158 df-xp 5627 df-rel 5628 |
| This theorem is referenced by: frxp3 8090 |
| Copyright terms: Public domain | W3C validator |