MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  el2xpss Structured version   Visualization version   GIF version

Theorem el2xpss 7978
Description: Version of elrel 5744 for triple Cartesian products. (Contributed by Scott Fenton, 1-Feb-2025.)
Assertion
Ref Expression
el2xpss ((𝐴𝑅𝑅 ⊆ ((𝐵 × 𝐶) × 𝐷)) → ∃𝑥𝑦𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐷,𝑦,𝑧
Allowed substitution hints:   𝑅(𝑥,𝑦,𝑧)

Proof of Theorem el2xpss
StepHypRef Expression
1 ssel2 3925 . . 3 ((𝑅 ⊆ ((𝐵 × 𝐶) × 𝐷) ∧ 𝐴𝑅) → 𝐴 ∈ ((𝐵 × 𝐶) × 𝐷))
21ancoms 458 . 2 ((𝐴𝑅𝑅 ⊆ ((𝐵 × 𝐶) × 𝐷)) → 𝐴 ∈ ((𝐵 × 𝐶) × 𝐷))
3 el2xptp 7976 . . 3 (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) ↔ ∃𝑥𝐵𝑦𝐶𝑧𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
4 rexex 3063 . . . . . . 7 (∃𝑧𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ∃𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
54reximi 3071 . . . . . 6 (∃𝑦𝐶𝑧𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ∃𝑦𝐶𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
6 rexex 3063 . . . . . 6 (∃𝑦𝐶𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ∃𝑦𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
75, 6syl 17 . . . . 5 (∃𝑦𝐶𝑧𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ∃𝑦𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
87reximi 3071 . . . 4 (∃𝑥𝐵𝑦𝐶𝑧𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ∃𝑥𝐵𝑦𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
9 rexex 3063 . . . 4 (∃𝑥𝐵𝑦𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ∃𝑥𝑦𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
108, 9syl 17 . . 3 (∃𝑥𝐵𝑦𝐶𝑧𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ∃𝑥𝑦𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
113, 10sylbi 217 . 2 (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) → ∃𝑥𝑦𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
122, 11syl 17 1 ((𝐴𝑅𝑅 ⊆ ((𝐵 × 𝐶) × 𝐷)) → ∃𝑥𝑦𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2113  wrex 3057  wss 3898  cotp 4585   × cxp 5619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-ot 4586  df-iun 4945  df-opab 5158  df-xp 5627  df-rel 5628
This theorem is referenced by:  frxp3  8090
  Copyright terms: Public domain W3C validator