![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > el2xpss | Structured version Visualization version GIF version |
Description: Version of elrel 5804 for triple Cartesian products. (Contributed by Scott Fenton, 1-Feb-2025.) |
Ref | Expression |
---|---|
el2xpss | ⊢ ((𝐴 ∈ 𝑅 ∧ 𝑅 ⊆ ((𝐵 × 𝐶) × 𝐷)) → ∃𝑥∃𝑦∃𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel2 3977 | . . 3 ⊢ ((𝑅 ⊆ ((𝐵 × 𝐶) × 𝐷) ∧ 𝐴 ∈ 𝑅) → 𝐴 ∈ ((𝐵 × 𝐶) × 𝐷)) | |
2 | 1 | ancoms 457 | . 2 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝑅 ⊆ ((𝐵 × 𝐶) × 𝐷)) → 𝐴 ∈ ((𝐵 × 𝐶) × 𝐷)) |
3 | el2xptp 8045 | . . 3 ⊢ (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩) | |
4 | rexex 3073 | . . . . . . 7 ⊢ (∃𝑧 ∈ 𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ∃𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩) | |
5 | 4 | reximi 3081 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ∃𝑦 ∈ 𝐶 ∃𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩) |
6 | rexex 3073 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐶 ∃𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ∃𝑦∃𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ∃𝑦∃𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩) |
8 | 7 | reximi 3081 | . . . 4 ⊢ (∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ∃𝑥 ∈ 𝐵 ∃𝑦∃𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩) |
9 | rexex 3073 | . . . 4 ⊢ (∃𝑥 ∈ 𝐵 ∃𝑦∃𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ∃𝑥∃𝑦∃𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ∃𝑥∃𝑦∃𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩) |
11 | 3, 10 | sylbi 216 | . 2 ⊢ (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) → ∃𝑥∃𝑦∃𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩) |
12 | 2, 11 | syl 17 | 1 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝑅 ⊆ ((𝐵 × 𝐶) × 𝐷)) → ∃𝑥∃𝑦∃𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ∃wrex 3067 ⊆ wss 3949 ⟨cotp 4640 × cxp 5680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-ot 4641 df-iun 5002 df-opab 5215 df-xp 5688 df-rel 5689 |
This theorem is referenced by: frxp3 8162 |
Copyright terms: Public domain | W3C validator |