MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  el2xpss Structured version   Visualization version   GIF version

Theorem el2xpss 8078
Description: Version of elrel 5822 for triple Cartesian products. (Contributed by Scott Fenton, 1-Feb-2025.)
Assertion
Ref Expression
el2xpss ((𝐴𝑅𝑅 ⊆ ((𝐵 × 𝐶) × 𝐷)) → ∃𝑥𝑦𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐷,𝑦,𝑧
Allowed substitution hints:   𝑅(𝑥,𝑦,𝑧)

Proof of Theorem el2xpss
StepHypRef Expression
1 ssel2 4003 . . 3 ((𝑅 ⊆ ((𝐵 × 𝐶) × 𝐷) ∧ 𝐴𝑅) → 𝐴 ∈ ((𝐵 × 𝐶) × 𝐷))
21ancoms 458 . 2 ((𝐴𝑅𝑅 ⊆ ((𝐵 × 𝐶) × 𝐷)) → 𝐴 ∈ ((𝐵 × 𝐶) × 𝐷))
3 el2xptp 8076 . . 3 (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) ↔ ∃𝑥𝐵𝑦𝐶𝑧𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
4 rexex 3082 . . . . . . 7 (∃𝑧𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ∃𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
54reximi 3090 . . . . . 6 (∃𝑦𝐶𝑧𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ∃𝑦𝐶𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
6 rexex 3082 . . . . . 6 (∃𝑦𝐶𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ∃𝑦𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
75, 6syl 17 . . . . 5 (∃𝑦𝐶𝑧𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ∃𝑦𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
87reximi 3090 . . . 4 (∃𝑥𝐵𝑦𝐶𝑧𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ∃𝑥𝐵𝑦𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
9 rexex 3082 . . . 4 (∃𝑥𝐵𝑦𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ∃𝑥𝑦𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
108, 9syl 17 . . 3 (∃𝑥𝐵𝑦𝐶𝑧𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ∃𝑥𝑦𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
113, 10sylbi 217 . 2 (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) → ∃𝑥𝑦𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
122, 11syl 17 1 ((𝐴𝑅𝑅 ⊆ ((𝐵 × 𝐶) × 𝐷)) → ∃𝑥𝑦𝑧 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  wrex 3076  wss 3976  cotp 4656   × cxp 5698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-ot 4657  df-iun 5017  df-opab 5229  df-xp 5706  df-rel 5707
This theorem is referenced by:  frxp3  8192
  Copyright terms: Public domain W3C validator