MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2nd1st Structured version   Visualization version   GIF version

Theorem 2nd1st 7970
Description: Swap the members of an ordered pair. (Contributed by NM, 31-Dec-2014.)
Assertion
Ref Expression
2nd1st (𝐴 ∈ (𝐵 × 𝐶) → {𝐴} = ⟨(2nd𝐴), (1st𝐴)⟩)

Proof of Theorem 2nd1st
StepHypRef Expression
1 1st2nd2 7960 . . . . 5 (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
21sneqd 4588 . . . 4 (𝐴 ∈ (𝐵 × 𝐶) → {𝐴} = {⟨(1st𝐴), (2nd𝐴)⟩})
32cnveqd 5815 . . 3 (𝐴 ∈ (𝐵 × 𝐶) → {𝐴} = {⟨(1st𝐴), (2nd𝐴)⟩})
43unieqd 4872 . 2 (𝐴 ∈ (𝐵 × 𝐶) → {𝐴} = {⟨(1st𝐴), (2nd𝐴)⟩})
5 opswap 6176 . 2 {⟨(1st𝐴), (2nd𝐴)⟩} = ⟨(2nd𝐴), (1st𝐴)⟩
64, 5eqtrdi 2782 1 (𝐴 ∈ (𝐵 × 𝐶) → {𝐴} = ⟨(2nd𝐴), (1st𝐴)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  {csn 4576  cop 4582   cuni 4859   × cxp 5614  ccnv 5615  cfv 6481  1st c1st 7919  2nd c2nd 7920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-iota 6437  df-fun 6483  df-fv 6489  df-1st 7921  df-2nd 7922
This theorem is referenced by:  fcnvgreu  32650  gsumhashmul  33036  tposideq  48918  swapf1a  49300  swapf2a  49302
  Copyright terms: Public domain W3C validator