MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2nd1st Structured version   Visualization version   GIF version

Theorem 2nd1st 8024
Description: Swap the members of an ordered pair. (Contributed by NM, 31-Dec-2014.)
Assertion
Ref Expression
2nd1st (𝐴 ∈ (𝐵 × 𝐶) → {𝐴} = ⟨(2nd𝐴), (1st𝐴)⟩)

Proof of Theorem 2nd1st
StepHypRef Expression
1 1st2nd2 8014 . . . . 5 (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
21sneqd 4641 . . . 4 (𝐴 ∈ (𝐵 × 𝐶) → {𝐴} = {⟨(1st𝐴), (2nd𝐴)⟩})
32cnveqd 5876 . . 3 (𝐴 ∈ (𝐵 × 𝐶) → {𝐴} = {⟨(1st𝐴), (2nd𝐴)⟩})
43unieqd 4923 . 2 (𝐴 ∈ (𝐵 × 𝐶) → {𝐴} = {⟨(1st𝐴), (2nd𝐴)⟩})
5 opswap 6229 . 2 {⟨(1st𝐴), (2nd𝐴)⟩} = ⟨(2nd𝐴), (1st𝐴)⟩
64, 5eqtrdi 2789 1 (𝐴 ∈ (𝐵 × 𝐶) → {𝐴} = ⟨(2nd𝐴), (1st𝐴)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  {csn 4629  cop 4635   cuni 4909   × cxp 5675  ccnv 5676  cfv 6544  1st c1st 7973  2nd c2nd 7974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-iota 6496  df-fun 6546  df-fv 6552  df-1st 7975  df-2nd 7976
This theorem is referenced by:  fcnvgreu  31898  gsumhashmul  32208
  Copyright terms: Public domain W3C validator