![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2nd1st | Structured version Visualization version GIF version |
Description: Swap the members of an ordered pair. (Contributed by NM, 31-Dec-2014.) |
Ref | Expression |
---|---|
2nd1st | ⊢ (𝐴 ∈ (𝐵 × 𝐶) → ∪ ◡{𝐴} = ⟨(2nd ‘𝐴), (1st ‘𝐴)⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1st2nd2 8014 | . . . . 5 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩) | |
2 | 1 | sneqd 4641 | . . . 4 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → {𝐴} = {⟨(1st ‘𝐴), (2nd ‘𝐴)⟩}) |
3 | 2 | cnveqd 5876 | . . 3 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → ◡{𝐴} = ◡{⟨(1st ‘𝐴), (2nd ‘𝐴)⟩}) |
4 | 3 | unieqd 4923 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → ∪ ◡{𝐴} = ∪ ◡{⟨(1st ‘𝐴), (2nd ‘𝐴)⟩}) |
5 | opswap 6229 | . 2 ⊢ ∪ ◡{⟨(1st ‘𝐴), (2nd ‘𝐴)⟩} = ⟨(2nd ‘𝐴), (1st ‘𝐴)⟩ | |
6 | 4, 5 | eqtrdi 2789 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → ∪ ◡{𝐴} = ⟨(2nd ‘𝐴), (1st ‘𝐴)⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 {csn 4629 ⟨cop 4635 ∪ cuni 4909 × cxp 5675 ◡ccnv 5676 ‘cfv 6544 1st c1st 7973 2nd c2nd 7974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fv 6552 df-1st 7975 df-2nd 7976 |
This theorem is referenced by: fcnvgreu 31898 gsumhashmul 32208 |
Copyright terms: Public domain | W3C validator |