![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2nd1st | Structured version Visualization version GIF version |
Description: Swap the members of an ordered pair. (Contributed by NM, 31-Dec-2014.) |
Ref | Expression |
---|---|
2nd1st | ⊢ (𝐴 ∈ (𝐵 × 𝐶) → ∪ ◡{𝐴} = ⟨(2nd ‘𝐴), (1st ‘𝐴)⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1st2nd2 7961 | . . . . 5 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩) | |
2 | 1 | sneqd 4599 | . . . 4 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → {𝐴} = {⟨(1st ‘𝐴), (2nd ‘𝐴)⟩}) |
3 | 2 | cnveqd 5832 | . . 3 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → ◡{𝐴} = ◡{⟨(1st ‘𝐴), (2nd ‘𝐴)⟩}) |
4 | 3 | unieqd 4880 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → ∪ ◡{𝐴} = ∪ ◡{⟨(1st ‘𝐴), (2nd ‘𝐴)⟩}) |
5 | opswap 6182 | . 2 ⊢ ∪ ◡{⟨(1st ‘𝐴), (2nd ‘𝐴)⟩} = ⟨(2nd ‘𝐴), (1st ‘𝐴)⟩ | |
6 | 4, 5 | eqtrdi 2793 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → ∪ ◡{𝐴} = ⟨(2nd ‘𝐴), (1st ‘𝐴)⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 {csn 4587 ⟨cop 4593 ∪ cuni 4866 × cxp 5632 ◡ccnv 5633 ‘cfv 6497 1st c1st 7920 2nd c2nd 7921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-rab 3409 df-v 3448 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-iota 6449 df-fun 6499 df-fv 6505 df-1st 7922 df-2nd 7923 |
This theorem is referenced by: fcnvgreu 31592 gsumhashmul 31901 |
Copyright terms: Public domain | W3C validator |