| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > logbfval | Structured version Visualization version GIF version | ||
| Description: The general logarithm of a complex number to a fixed base. (Contributed by AV, 11-Jun-2020.) |
| Ref | Expression |
|---|---|
| logbfval | ⊢ (((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) ∧ 𝑋 ∈ (ℂ ∖ {0})) → ((curry logb ‘𝐵)‘𝑋) = (𝐵 logb 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-logb 26681 | . 2 ⊢ logb = (𝑥 ∈ (ℂ ∖ {0, 1}), 𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝑥))) | |
| 2 | ovexd 7424 | . . 3 ⊢ ((((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) ∧ 𝑋 ∈ (ℂ ∖ {0})) ∧ (𝑥 ∈ (ℂ ∖ {0, 1}) ∧ 𝑦 ∈ (ℂ ∖ {0}))) → ((log‘𝑦) / (log‘𝑥)) ∈ V) | |
| 3 | 2 | ralrimivva 3181 | . 2 ⊢ (((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) ∧ 𝑋 ∈ (ℂ ∖ {0})) → ∀𝑥 ∈ (ℂ ∖ {0, 1})∀𝑦 ∈ (ℂ ∖ {0})((log‘𝑦) / (log‘𝑥)) ∈ V) |
| 4 | cnex 11155 | . . 3 ⊢ ℂ ∈ V | |
| 5 | difexg 5286 | . . 3 ⊢ (ℂ ∈ V → (ℂ ∖ {0}) ∈ V) | |
| 6 | 4, 5 | mp1i 13 | . 2 ⊢ (((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (ℂ ∖ {0}) ∈ V) |
| 7 | eldifpr 4624 | . . . 4 ⊢ (𝐵 ∈ (ℂ ∖ {0, 1}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1)) | |
| 8 | 7 | biimpri 228 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → 𝐵 ∈ (ℂ ∖ {0, 1})) |
| 9 | 8 | adantr 480 | . 2 ⊢ (((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) ∧ 𝑋 ∈ (ℂ ∖ {0})) → 𝐵 ∈ (ℂ ∖ {0, 1})) |
| 10 | simpr 484 | . 2 ⊢ (((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) ∧ 𝑋 ∈ (ℂ ∖ {0})) → 𝑋 ∈ (ℂ ∖ {0})) | |
| 11 | 1, 3, 6, 9, 10 | fvmpocurryd 8252 | 1 ⊢ (((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) ∧ 𝑋 ∈ (ℂ ∖ {0})) → ((curry logb ‘𝐵)‘𝑋) = (𝐵 logb 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 ∖ cdif 3913 {csn 4591 {cpr 4593 ‘cfv 6513 (class class class)co 7389 curry ccur 8246 ℂcc 11072 0cc0 11074 1c1 11075 / cdiv 11841 logclog 26469 logb clogb 26680 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 ax-cnex 11130 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-cur 8248 df-logb 26681 |
| This theorem is referenced by: relogbf 26707 |
| Copyright terms: Public domain | W3C validator |