Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rege1logbrege0 Structured version   Visualization version   GIF version

Theorem rege1logbrege0 44546
Description: The general logarithm, with a real base greater than 1, for a real number greater than or equal to 1 is greater than or equal to 0. (Contributed by AV, 25-May-2020.)
Assertion
Ref Expression
rege1logbrege0 ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → 0 ≤ (𝐵 logb 𝑋))

Proof of Theorem rege1logbrege0
StepHypRef Expression
1 1re 10629 . . . . . . 7 1 ∈ ℝ
2 elicopnf 12821 . . . . . . 7 (1 ∈ ℝ → (𝑋 ∈ (1[,)+∞) ↔ (𝑋 ∈ ℝ ∧ 1 ≤ 𝑋)))
31, 2ax-mp 5 . . . . . 6 (𝑋 ∈ (1[,)+∞) ↔ (𝑋 ∈ ℝ ∧ 1 ≤ 𝑋))
4 id 22 . . . . . 6 ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → (𝑋 ∈ ℝ ∧ 1 ≤ 𝑋))
53, 4sylbi 218 . . . . 5 (𝑋 ∈ (1[,)+∞) → (𝑋 ∈ ℝ ∧ 1 ≤ 𝑋))
65adantl 482 . . . 4 ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → (𝑋 ∈ ℝ ∧ 1 ≤ 𝑋))
7 logge0 25115 . . . 4 ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → 0 ≤ (log‘𝑋))
86, 7syl 17 . . 3 ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → 0 ≤ (log‘𝑋))
9 simpl 483 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → 𝑋 ∈ ℝ)
10 0lt1 11150 . . . . . . . . . 10 0 < 1
11 0red 10632 . . . . . . . . . . 11 (𝑋 ∈ ℝ → 0 ∈ ℝ)
12 1red 10630 . . . . . . . . . . 11 (𝑋 ∈ ℝ → 1 ∈ ℝ)
13 id 22 . . . . . . . . . . 11 (𝑋 ∈ ℝ → 𝑋 ∈ ℝ)
14 ltletr 10720 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑋 ∈ ℝ) → ((0 < 1 ∧ 1 ≤ 𝑋) → 0 < 𝑋))
1511, 12, 13, 14syl3anc 1363 . . . . . . . . . 10 (𝑋 ∈ ℝ → ((0 < 1 ∧ 1 ≤ 𝑋) → 0 < 𝑋))
1610, 15mpani 692 . . . . . . . . 9 (𝑋 ∈ ℝ → (1 ≤ 𝑋 → 0 < 𝑋))
1716imp 407 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → 0 < 𝑋)
189, 17elrpd 12416 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → 𝑋 ∈ ℝ+)
193, 18sylbi 218 . . . . . 6 (𝑋 ∈ (1[,)+∞) → 𝑋 ∈ ℝ+)
2019relogcld 25133 . . . . 5 (𝑋 ∈ (1[,)+∞) → (log‘𝑋) ∈ ℝ)
2120adantl 482 . . . 4 ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → (log‘𝑋) ∈ ℝ)
22 1xr 10688 . . . . . . . 8 1 ∈ ℝ*
23 elioopnf 12819 . . . . . . . 8 (1 ∈ ℝ* → (𝐵 ∈ (1(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 1 < 𝐵)))
2422, 23ax-mp 5 . . . . . . 7 (𝐵 ∈ (1(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 1 < 𝐵))
25 simpl 483 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ∈ ℝ)
26 0red 10632 . . . . . . . . . . 11 (𝐵 ∈ ℝ → 0 ∈ ℝ)
27 1red 10630 . . . . . . . . . . 11 (𝐵 ∈ ℝ → 1 ∈ ℝ)
28 id 22 . . . . . . . . . . 11 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ)
29 lttr 10705 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵))
3026, 27, 28, 29syl3anc 1363 . . . . . . . . . 10 (𝐵 ∈ ℝ → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵))
3110, 30mpani 692 . . . . . . . . 9 (𝐵 ∈ ℝ → (1 < 𝐵 → 0 < 𝐵))
3231imp 407 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 < 𝐵)
3325, 32elrpd 12416 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ∈ ℝ+)
3424, 33sylbi 218 . . . . . 6 (𝐵 ∈ (1(,)+∞) → 𝐵 ∈ ℝ+)
3534relogcld 25133 . . . . 5 (𝐵 ∈ (1(,)+∞) → (log‘𝐵) ∈ ℝ)
3635adantr 481 . . . 4 ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → (log‘𝐵) ∈ ℝ)
37 regt1loggt0 44524 . . . . 5 (𝐵 ∈ (1(,)+∞) → 0 < (log‘𝐵))
3837adantr 481 . . . 4 ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → 0 < (log‘𝐵))
39 ge0div 11495 . . . 4 (((log‘𝑋) ∈ ℝ ∧ (log‘𝐵) ∈ ℝ ∧ 0 < (log‘𝐵)) → (0 ≤ (log‘𝑋) ↔ 0 ≤ ((log‘𝑋) / (log‘𝐵))))
4021, 36, 38, 39syl3anc 1363 . . 3 ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → (0 ≤ (log‘𝑋) ↔ 0 ≤ ((log‘𝑋) / (log‘𝐵))))
418, 40mpbid 233 . 2 ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → 0 ≤ ((log‘𝑋) / (log‘𝐵)))
42 recn 10615 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
4342adantr 481 . . . . 5 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ∈ ℂ)
4432gt0ne0d 11192 . . . . 5 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ≠ 0)
4527, 28ltlend 10773 . . . . . 6 (𝐵 ∈ ℝ → (1 < 𝐵 ↔ (1 ≤ 𝐵𝐵 ≠ 1)))
4645simplbda 500 . . . . 5 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ≠ 1)
4743, 44, 463jca 1120 . . . 4 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1))
48 eldifpr 4587 . . . 4 (𝐵 ∈ (ℂ ∖ {0, 1}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1))
4947, 24, 483imtr4i 293 . . 3 (𝐵 ∈ (1(,)+∞) → 𝐵 ∈ (ℂ ∖ {0, 1}))
50 recn 10615 . . . . . 6 (𝑋 ∈ ℝ → 𝑋 ∈ ℂ)
5150adantr 481 . . . . 5 ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → 𝑋 ∈ ℂ)
5217gt0ne0d 11192 . . . . 5 ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → 𝑋 ≠ 0)
5351, 52jca 512 . . . 4 ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → (𝑋 ∈ ℂ ∧ 𝑋 ≠ 0))
54 eldifsn 4711 . . . 4 (𝑋 ∈ (ℂ ∖ {0}) ↔ (𝑋 ∈ ℂ ∧ 𝑋 ≠ 0))
5553, 3, 543imtr4i 293 . . 3 (𝑋 ∈ (1[,)+∞) → 𝑋 ∈ (ℂ ∖ {0}))
56 logbval 25271 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵)))
5749, 55, 56syl2an 595 . 2 ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵)))
5841, 57breqtrrd 5085 1 ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → 0 ≤ (𝐵 logb 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013  cdif 3930  {csn 4557  {cpr 4559   class class class wbr 5057  cfv 6348  (class class class)co 7145  cc 10523  cr 10524  0cc0 10525  1c1 10526  +∞cpnf 10660  *cxr 10662   < clt 10663  cle 10664   / cdiv 11285  +crp 12377  (,)cioo 12726  [,)cico 12728  logclog 25065   logb clogb 25269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-fl 13150  df-mod 13226  df-seq 13358  df-exp 13418  df-fac 13622  df-bc 13651  df-hash 13679  df-shft 14414  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-limsup 14816  df-clim 14833  df-rlim 14834  df-sum 15031  df-ef 15409  df-sin 15411  df-cos 15412  df-pi 15414  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-rest 16684  df-topn 16685  df-0g 16703  df-gsum 16704  df-topgen 16705  df-pt 16706  df-prds 16709  df-xrs 16763  df-qtop 16768  df-imas 16769  df-xps 16771  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-mulg 18163  df-cntz 18385  df-cmn 18837  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-fbas 20470  df-fg 20471  df-cnfld 20474  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-cld 21555  df-ntr 21556  df-cls 21557  df-nei 21634  df-lp 21672  df-perf 21673  df-cn 21763  df-cnp 21764  df-haus 21851  df-tx 22098  df-hmeo 22291  df-fil 22382  df-fm 22474  df-flim 22475  df-flf 22476  df-xms 22857  df-ms 22858  df-tms 22859  df-cncf 23413  df-limc 24391  df-dv 24392  df-log 25067  df-logb 25270
This theorem is referenced by:  rege1logbzge0  44547
  Copyright terms: Public domain W3C validator