Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rege1logbrege0 Structured version   Visualization version   GIF version

Theorem rege1logbrege0 46718
Description: The general logarithm, with a real base greater than 1, for a real number greater than or equal to 1 is greater than or equal to 0. (Contributed by AV, 25-May-2020.)
Assertion
Ref Expression
rege1logbrege0 ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → 0 ≤ (𝐵 logb 𝑋))

Proof of Theorem rege1logbrege0
StepHypRef Expression
1 1re 11162 . . . . . . 7 1 ∈ ℝ
2 elicopnf 13369 . . . . . . 7 (1 ∈ ℝ → (𝑋 ∈ (1[,)+∞) ↔ (𝑋 ∈ ℝ ∧ 1 ≤ 𝑋)))
31, 2ax-mp 5 . . . . . 6 (𝑋 ∈ (1[,)+∞) ↔ (𝑋 ∈ ℝ ∧ 1 ≤ 𝑋))
4 id 22 . . . . . 6 ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → (𝑋 ∈ ℝ ∧ 1 ≤ 𝑋))
53, 4sylbi 216 . . . . 5 (𝑋 ∈ (1[,)+∞) → (𝑋 ∈ ℝ ∧ 1 ≤ 𝑋))
65adantl 483 . . . 4 ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → (𝑋 ∈ ℝ ∧ 1 ≤ 𝑋))
7 logge0 25976 . . . 4 ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → 0 ≤ (log‘𝑋))
86, 7syl 17 . . 3 ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → 0 ≤ (log‘𝑋))
9 simpl 484 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → 𝑋 ∈ ℝ)
10 0lt1 11684 . . . . . . . . . 10 0 < 1
11 0red 11165 . . . . . . . . . . 11 (𝑋 ∈ ℝ → 0 ∈ ℝ)
12 1red 11163 . . . . . . . . . . 11 (𝑋 ∈ ℝ → 1 ∈ ℝ)
13 id 22 . . . . . . . . . . 11 (𝑋 ∈ ℝ → 𝑋 ∈ ℝ)
14 ltletr 11254 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑋 ∈ ℝ) → ((0 < 1 ∧ 1 ≤ 𝑋) → 0 < 𝑋))
1511, 12, 13, 14syl3anc 1372 . . . . . . . . . 10 (𝑋 ∈ ℝ → ((0 < 1 ∧ 1 ≤ 𝑋) → 0 < 𝑋))
1610, 15mpani 695 . . . . . . . . 9 (𝑋 ∈ ℝ → (1 ≤ 𝑋 → 0 < 𝑋))
1716imp 408 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → 0 < 𝑋)
189, 17elrpd 12961 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → 𝑋 ∈ ℝ+)
193, 18sylbi 216 . . . . . 6 (𝑋 ∈ (1[,)+∞) → 𝑋 ∈ ℝ+)
2019relogcld 25994 . . . . 5 (𝑋 ∈ (1[,)+∞) → (log‘𝑋) ∈ ℝ)
2120adantl 483 . . . 4 ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → (log‘𝑋) ∈ ℝ)
22 1xr 11221 . . . . . . . 8 1 ∈ ℝ*
23 elioopnf 13367 . . . . . . . 8 (1 ∈ ℝ* → (𝐵 ∈ (1(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 1 < 𝐵)))
2422, 23ax-mp 5 . . . . . . 7 (𝐵 ∈ (1(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 1 < 𝐵))
25 simpl 484 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ∈ ℝ)
26 0red 11165 . . . . . . . . . . 11 (𝐵 ∈ ℝ → 0 ∈ ℝ)
27 1red 11163 . . . . . . . . . . 11 (𝐵 ∈ ℝ → 1 ∈ ℝ)
28 id 22 . . . . . . . . . . 11 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ)
29 lttr 11238 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵))
3026, 27, 28, 29syl3anc 1372 . . . . . . . . . 10 (𝐵 ∈ ℝ → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵))
3110, 30mpani 695 . . . . . . . . 9 (𝐵 ∈ ℝ → (1 < 𝐵 → 0 < 𝐵))
3231imp 408 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 < 𝐵)
3325, 32elrpd 12961 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ∈ ℝ+)
3424, 33sylbi 216 . . . . . 6 (𝐵 ∈ (1(,)+∞) → 𝐵 ∈ ℝ+)
3534relogcld 25994 . . . . 5 (𝐵 ∈ (1(,)+∞) → (log‘𝐵) ∈ ℝ)
3635adantr 482 . . . 4 ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → (log‘𝐵) ∈ ℝ)
37 regt1loggt0 46696 . . . . 5 (𝐵 ∈ (1(,)+∞) → 0 < (log‘𝐵))
3837adantr 482 . . . 4 ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → 0 < (log‘𝐵))
39 ge0div 12029 . . . 4 (((log‘𝑋) ∈ ℝ ∧ (log‘𝐵) ∈ ℝ ∧ 0 < (log‘𝐵)) → (0 ≤ (log‘𝑋) ↔ 0 ≤ ((log‘𝑋) / (log‘𝐵))))
4021, 36, 38, 39syl3anc 1372 . . 3 ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → (0 ≤ (log‘𝑋) ↔ 0 ≤ ((log‘𝑋) / (log‘𝐵))))
418, 40mpbid 231 . 2 ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → 0 ≤ ((log‘𝑋) / (log‘𝐵)))
42 recn 11148 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
4342adantr 482 . . . . 5 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ∈ ℂ)
4432gt0ne0d 11726 . . . . 5 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ≠ 0)
4527, 28ltlend 11307 . . . . . 6 (𝐵 ∈ ℝ → (1 < 𝐵 ↔ (1 ≤ 𝐵𝐵 ≠ 1)))
4645simplbda 501 . . . . 5 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ≠ 1)
4743, 44, 463jca 1129 . . . 4 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1))
48 eldifpr 4623 . . . 4 (𝐵 ∈ (ℂ ∖ {0, 1}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1))
4947, 24, 483imtr4i 292 . . 3 (𝐵 ∈ (1(,)+∞) → 𝐵 ∈ (ℂ ∖ {0, 1}))
50 recn 11148 . . . . . 6 (𝑋 ∈ ℝ → 𝑋 ∈ ℂ)
5150adantr 482 . . . . 5 ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → 𝑋 ∈ ℂ)
5217gt0ne0d 11726 . . . . 5 ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → 𝑋 ≠ 0)
5351, 52jca 513 . . . 4 ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → (𝑋 ∈ ℂ ∧ 𝑋 ≠ 0))
54 eldifsn 4752 . . . 4 (𝑋 ∈ (ℂ ∖ {0}) ↔ (𝑋 ∈ ℂ ∧ 𝑋 ≠ 0))
5553, 3, 543imtr4i 292 . . 3 (𝑋 ∈ (1[,)+∞) → 𝑋 ∈ (ℂ ∖ {0}))
56 logbval 26132 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵)))
5749, 55, 56syl2an 597 . 2 ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵)))
5841, 57breqtrrd 5138 1 ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → 0 ≤ (𝐵 logb 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2944  cdif 3912  {csn 4591  {cpr 4593   class class class wbr 5110  cfv 6501  (class class class)co 7362  cc 11056  cr 11057  0cc0 11058  1c1 11059  +∞cpnf 11193  *cxr 11195   < clt 11196  cle 11197   / cdiv 11819  +crp 12922  (,)cioo 13271  [,)cico 13273  logclog 25926   logb clogb 26130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9584  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136  ax-addf 11137  ax-mulf 11138
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-iin 4962  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-om 7808  df-1st 7926  df-2nd 7927  df-supp 8098  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-er 8655  df-map 8774  df-pm 8775  df-ixp 8843  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-fsupp 9313  df-fi 9354  df-sup 9385  df-inf 9386  df-oi 9453  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-2 12223  df-3 12224  df-4 12225  df-5 12226  df-6 12227  df-7 12228  df-8 12229  df-9 12230  df-n0 12421  df-z 12507  df-dec 12626  df-uz 12771  df-q 12881  df-rp 12923  df-xneg 13040  df-xadd 13041  df-xmul 13042  df-ioo 13275  df-ioc 13276  df-ico 13277  df-icc 13278  df-fz 13432  df-fzo 13575  df-fl 13704  df-mod 13782  df-seq 13914  df-exp 13975  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14959  df-cj 14991  df-re 14992  df-im 14993  df-sqrt 15127  df-abs 15128  df-limsup 15360  df-clim 15377  df-rlim 15378  df-sum 15578  df-ef 15957  df-sin 15959  df-cos 15960  df-pi 15962  df-struct 17026  df-sets 17043  df-slot 17061  df-ndx 17073  df-base 17091  df-ress 17120  df-plusg 17153  df-mulr 17154  df-starv 17155  df-sca 17156  df-vsca 17157  df-ip 17158  df-tset 17159  df-ple 17160  df-ds 17162  df-unif 17163  df-hom 17164  df-cco 17165  df-rest 17311  df-topn 17312  df-0g 17330  df-gsum 17331  df-topgen 17332  df-pt 17333  df-prds 17336  df-xrs 17391  df-qtop 17396  df-imas 17397  df-xps 17399  df-mre 17473  df-mrc 17474  df-acs 17476  df-mgm 18504  df-sgrp 18553  df-mnd 18564  df-submnd 18609  df-mulg 18880  df-cntz 19104  df-cmn 19571  df-psmet 20804  df-xmet 20805  df-met 20806  df-bl 20807  df-mopn 20808  df-fbas 20809  df-fg 20810  df-cnfld 20813  df-top 22259  df-topon 22276  df-topsp 22298  df-bases 22312  df-cld 22386  df-ntr 22387  df-cls 22388  df-nei 22465  df-lp 22503  df-perf 22504  df-cn 22594  df-cnp 22595  df-haus 22682  df-tx 22929  df-hmeo 23122  df-fil 23213  df-fm 23305  df-flim 23306  df-flf 23307  df-xms 23689  df-ms 23690  df-tms 23691  df-cncf 24257  df-limc 25246  df-dv 25247  df-log 25928  df-logb 26131
This theorem is referenced by:  rege1logbzge0  46719
  Copyright terms: Public domain W3C validator