Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rege1logbrege0 | Structured version Visualization version GIF version |
Description: The general logarithm, with a real base greater than 1, for a real number greater than or equal to 1 is greater than or equal to 0. (Contributed by AV, 25-May-2020.) |
Ref | Expression |
---|---|
rege1logbrege0 | ⊢ ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → 0 ≤ (𝐵 logb 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 10672 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
2 | elicopnf 12870 | . . . . . . 7 ⊢ (1 ∈ ℝ → (𝑋 ∈ (1[,)+∞) ↔ (𝑋 ∈ ℝ ∧ 1 ≤ 𝑋))) | |
3 | 1, 2 | ax-mp 5 | . . . . . 6 ⊢ (𝑋 ∈ (1[,)+∞) ↔ (𝑋 ∈ ℝ ∧ 1 ≤ 𝑋)) |
4 | id 22 | . . . . . 6 ⊢ ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → (𝑋 ∈ ℝ ∧ 1 ≤ 𝑋)) | |
5 | 3, 4 | sylbi 220 | . . . . 5 ⊢ (𝑋 ∈ (1[,)+∞) → (𝑋 ∈ ℝ ∧ 1 ≤ 𝑋)) |
6 | 5 | adantl 486 | . . . 4 ⊢ ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → (𝑋 ∈ ℝ ∧ 1 ≤ 𝑋)) |
7 | logge0 25288 | . . . 4 ⊢ ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → 0 ≤ (log‘𝑋)) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → 0 ≤ (log‘𝑋)) |
9 | simpl 487 | . . . . . . . 8 ⊢ ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → 𝑋 ∈ ℝ) | |
10 | 0lt1 11193 | . . . . . . . . . 10 ⊢ 0 < 1 | |
11 | 0red 10675 | . . . . . . . . . . 11 ⊢ (𝑋 ∈ ℝ → 0 ∈ ℝ) | |
12 | 1red 10673 | . . . . . . . . . . 11 ⊢ (𝑋 ∈ ℝ → 1 ∈ ℝ) | |
13 | id 22 | . . . . . . . . . . 11 ⊢ (𝑋 ∈ ℝ → 𝑋 ∈ ℝ) | |
14 | ltletr 10763 | . . . . . . . . . . 11 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑋 ∈ ℝ) → ((0 < 1 ∧ 1 ≤ 𝑋) → 0 < 𝑋)) | |
15 | 11, 12, 13, 14 | syl3anc 1369 | . . . . . . . . . 10 ⊢ (𝑋 ∈ ℝ → ((0 < 1 ∧ 1 ≤ 𝑋) → 0 < 𝑋)) |
16 | 10, 15 | mpani 696 | . . . . . . . . 9 ⊢ (𝑋 ∈ ℝ → (1 ≤ 𝑋 → 0 < 𝑋)) |
17 | 16 | imp 411 | . . . . . . . 8 ⊢ ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → 0 < 𝑋) |
18 | 9, 17 | elrpd 12462 | . . . . . . 7 ⊢ ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → 𝑋 ∈ ℝ+) |
19 | 3, 18 | sylbi 220 | . . . . . 6 ⊢ (𝑋 ∈ (1[,)+∞) → 𝑋 ∈ ℝ+) |
20 | 19 | relogcld 25306 | . . . . 5 ⊢ (𝑋 ∈ (1[,)+∞) → (log‘𝑋) ∈ ℝ) |
21 | 20 | adantl 486 | . . . 4 ⊢ ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → (log‘𝑋) ∈ ℝ) |
22 | 1xr 10731 | . . . . . . . 8 ⊢ 1 ∈ ℝ* | |
23 | elioopnf 12868 | . . . . . . . 8 ⊢ (1 ∈ ℝ* → (𝐵 ∈ (1(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 1 < 𝐵))) | |
24 | 22, 23 | ax-mp 5 | . . . . . . 7 ⊢ (𝐵 ∈ (1(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) |
25 | simpl 487 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ∈ ℝ) | |
26 | 0red 10675 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ ℝ → 0 ∈ ℝ) | |
27 | 1red 10673 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ ℝ → 1 ∈ ℝ) | |
28 | id 22 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ) | |
29 | lttr 10748 | . . . . . . . . . . 11 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵)) | |
30 | 26, 27, 28, 29 | syl3anc 1369 | . . . . . . . . . 10 ⊢ (𝐵 ∈ ℝ → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵)) |
31 | 10, 30 | mpani 696 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℝ → (1 < 𝐵 → 0 < 𝐵)) |
32 | 31 | imp 411 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 < 𝐵) |
33 | 25, 32 | elrpd 12462 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ∈ ℝ+) |
34 | 24, 33 | sylbi 220 | . . . . . 6 ⊢ (𝐵 ∈ (1(,)+∞) → 𝐵 ∈ ℝ+) |
35 | 34 | relogcld 25306 | . . . . 5 ⊢ (𝐵 ∈ (1(,)+∞) → (log‘𝐵) ∈ ℝ) |
36 | 35 | adantr 485 | . . . 4 ⊢ ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → (log‘𝐵) ∈ ℝ) |
37 | regt1loggt0 45308 | . . . . 5 ⊢ (𝐵 ∈ (1(,)+∞) → 0 < (log‘𝐵)) | |
38 | 37 | adantr 485 | . . . 4 ⊢ ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → 0 < (log‘𝐵)) |
39 | ge0div 11538 | . . . 4 ⊢ (((log‘𝑋) ∈ ℝ ∧ (log‘𝐵) ∈ ℝ ∧ 0 < (log‘𝐵)) → (0 ≤ (log‘𝑋) ↔ 0 ≤ ((log‘𝑋) / (log‘𝐵)))) | |
40 | 21, 36, 38, 39 | syl3anc 1369 | . . 3 ⊢ ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → (0 ≤ (log‘𝑋) ↔ 0 ≤ ((log‘𝑋) / (log‘𝐵)))) |
41 | 8, 40 | mpbid 235 | . 2 ⊢ ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → 0 ≤ ((log‘𝑋) / (log‘𝐵))) |
42 | recn 10658 | . . . . . 6 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
43 | 42 | adantr 485 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ∈ ℂ) |
44 | 32 | gt0ne0d 11235 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ≠ 0) |
45 | 27, 28 | ltlend 10816 | . . . . . 6 ⊢ (𝐵 ∈ ℝ → (1 < 𝐵 ↔ (1 ≤ 𝐵 ∧ 𝐵 ≠ 1))) |
46 | 45 | simplbda 504 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ≠ 1) |
47 | 43, 44, 46 | 3jca 1126 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1)) |
48 | eldifpr 4555 | . . . 4 ⊢ (𝐵 ∈ (ℂ ∖ {0, 1}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1)) | |
49 | 47, 24, 48 | 3imtr4i 296 | . . 3 ⊢ (𝐵 ∈ (1(,)+∞) → 𝐵 ∈ (ℂ ∖ {0, 1})) |
50 | recn 10658 | . . . . . 6 ⊢ (𝑋 ∈ ℝ → 𝑋 ∈ ℂ) | |
51 | 50 | adantr 485 | . . . . 5 ⊢ ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → 𝑋 ∈ ℂ) |
52 | 17 | gt0ne0d 11235 | . . . . 5 ⊢ ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → 𝑋 ≠ 0) |
53 | 51, 52 | jca 516 | . . . 4 ⊢ ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → (𝑋 ∈ ℂ ∧ 𝑋 ≠ 0)) |
54 | eldifsn 4678 | . . . 4 ⊢ (𝑋 ∈ (ℂ ∖ {0}) ↔ (𝑋 ∈ ℂ ∧ 𝑋 ≠ 0)) | |
55 | 53, 3, 54 | 3imtr4i 296 | . . 3 ⊢ (𝑋 ∈ (1[,)+∞) → 𝑋 ∈ (ℂ ∖ {0})) |
56 | logbval 25444 | . . 3 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵))) | |
57 | 49, 55, 56 | syl2an 599 | . 2 ⊢ ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵))) |
58 | 41, 57 | breqtrrd 5061 | 1 ⊢ ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → 0 ≤ (𝐵 logb 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 400 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 ≠ wne 2952 ∖ cdif 3856 {csn 4523 {cpr 4525 class class class wbr 5033 ‘cfv 6336 (class class class)co 7151 ℂcc 10566 ℝcr 10567 0cc0 10568 1c1 10569 +∞cpnf 10703 ℝ*cxr 10705 < clt 10706 ≤ cle 10707 / cdiv 11328 ℝ+crp 12423 (,)cioo 12772 [,)cico 12774 logclog 25238 logb clogb 25442 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-inf2 9130 ax-cnex 10624 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-pre-mulgt0 10645 ax-pre-sup 10646 ax-addf 10647 ax-mulf 10648 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-int 4840 df-iun 4886 df-iin 4887 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-se 5485 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-isom 6345 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-of 7406 df-om 7581 df-1st 7694 df-2nd 7695 df-supp 7837 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-2o 8114 df-oadd 8117 df-er 8300 df-map 8419 df-pm 8420 df-ixp 8481 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-fsupp 8860 df-fi 8901 df-sup 8932 df-inf 8933 df-oi 9000 df-card 9394 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-sub 10903 df-neg 10904 df-div 11329 df-nn 11668 df-2 11730 df-3 11731 df-4 11732 df-5 11733 df-6 11734 df-7 11735 df-8 11736 df-9 11737 df-n0 11928 df-z 12014 df-dec 12131 df-uz 12276 df-q 12382 df-rp 12424 df-xneg 12541 df-xadd 12542 df-xmul 12543 df-ioo 12776 df-ioc 12777 df-ico 12778 df-icc 12779 df-fz 12933 df-fzo 13076 df-fl 13204 df-mod 13280 df-seq 13412 df-exp 13473 df-fac 13677 df-bc 13706 df-hash 13734 df-shft 14467 df-cj 14499 df-re 14500 df-im 14501 df-sqrt 14635 df-abs 14636 df-limsup 14869 df-clim 14886 df-rlim 14887 df-sum 15084 df-ef 15462 df-sin 15464 df-cos 15465 df-pi 15467 df-struct 16536 df-ndx 16537 df-slot 16538 df-base 16540 df-sets 16541 df-ress 16542 df-plusg 16629 df-mulr 16630 df-starv 16631 df-sca 16632 df-vsca 16633 df-ip 16634 df-tset 16635 df-ple 16636 df-ds 16638 df-unif 16639 df-hom 16640 df-cco 16641 df-rest 16747 df-topn 16748 df-0g 16766 df-gsum 16767 df-topgen 16768 df-pt 16769 df-prds 16772 df-xrs 16826 df-qtop 16831 df-imas 16832 df-xps 16834 df-mre 16908 df-mrc 16909 df-acs 16911 df-mgm 17911 df-sgrp 17960 df-mnd 17971 df-submnd 18016 df-mulg 18285 df-cntz 18507 df-cmn 18968 df-psmet 20151 df-xmet 20152 df-met 20153 df-bl 20154 df-mopn 20155 df-fbas 20156 df-fg 20157 df-cnfld 20160 df-top 21587 df-topon 21604 df-topsp 21626 df-bases 21639 df-cld 21712 df-ntr 21713 df-cls 21714 df-nei 21791 df-lp 21829 df-perf 21830 df-cn 21920 df-cnp 21921 df-haus 22008 df-tx 22255 df-hmeo 22448 df-fil 22539 df-fm 22631 df-flim 22632 df-flf 22633 df-xms 23015 df-ms 23016 df-tms 23017 df-cncf 23572 df-limc 24558 df-dv 24559 df-log 25240 df-logb 25443 |
This theorem is referenced by: rege1logbzge0 45331 |
Copyright terms: Public domain | W3C validator |