Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rege1logbrege0 Structured version   Visualization version   GIF version

Theorem rege1logbrege0 48563
Description: The general logarithm, with a real base greater than 1, for a real number greater than or equal to 1 is greater than or equal to 0. (Contributed by AV, 25-May-2020.)
Assertion
Ref Expression
rege1logbrege0 ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → 0 ≤ (𝐵 logb 𝑋))

Proof of Theorem rege1logbrege0
StepHypRef Expression
1 1re 11134 . . . . . . 7 1 ∈ ℝ
2 elicopnf 13367 . . . . . . 7 (1 ∈ ℝ → (𝑋 ∈ (1[,)+∞) ↔ (𝑋 ∈ ℝ ∧ 1 ≤ 𝑋)))
31, 2ax-mp 5 . . . . . 6 (𝑋 ∈ (1[,)+∞) ↔ (𝑋 ∈ ℝ ∧ 1 ≤ 𝑋))
4 id 22 . . . . . 6 ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → (𝑋 ∈ ℝ ∧ 1 ≤ 𝑋))
53, 4sylbi 217 . . . . 5 (𝑋 ∈ (1[,)+∞) → (𝑋 ∈ ℝ ∧ 1 ≤ 𝑋))
65adantl 481 . . . 4 ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → (𝑋 ∈ ℝ ∧ 1 ≤ 𝑋))
7 logge0 26531 . . . 4 ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → 0 ≤ (log‘𝑋))
86, 7syl 17 . . 3 ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → 0 ≤ (log‘𝑋))
9 simpl 482 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → 𝑋 ∈ ℝ)
10 0lt1 11661 . . . . . . . . . 10 0 < 1
11 0red 11137 . . . . . . . . . . 11 (𝑋 ∈ ℝ → 0 ∈ ℝ)
12 1red 11135 . . . . . . . . . . 11 (𝑋 ∈ ℝ → 1 ∈ ℝ)
13 id 22 . . . . . . . . . . 11 (𝑋 ∈ ℝ → 𝑋 ∈ ℝ)
14 ltletr 11227 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑋 ∈ ℝ) → ((0 < 1 ∧ 1 ≤ 𝑋) → 0 < 𝑋))
1511, 12, 13, 14syl3anc 1373 . . . . . . . . . 10 (𝑋 ∈ ℝ → ((0 < 1 ∧ 1 ≤ 𝑋) → 0 < 𝑋))
1610, 15mpani 696 . . . . . . . . 9 (𝑋 ∈ ℝ → (1 ≤ 𝑋 → 0 < 𝑋))
1716imp 406 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → 0 < 𝑋)
189, 17elrpd 12953 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → 𝑋 ∈ ℝ+)
193, 18sylbi 217 . . . . . 6 (𝑋 ∈ (1[,)+∞) → 𝑋 ∈ ℝ+)
2019relogcld 26549 . . . . 5 (𝑋 ∈ (1[,)+∞) → (log‘𝑋) ∈ ℝ)
2120adantl 481 . . . 4 ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → (log‘𝑋) ∈ ℝ)
22 1xr 11193 . . . . . . . 8 1 ∈ ℝ*
23 elioopnf 13365 . . . . . . . 8 (1 ∈ ℝ* → (𝐵 ∈ (1(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 1 < 𝐵)))
2422, 23ax-mp 5 . . . . . . 7 (𝐵 ∈ (1(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 1 < 𝐵))
25 simpl 482 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ∈ ℝ)
26 0red 11137 . . . . . . . . . . 11 (𝐵 ∈ ℝ → 0 ∈ ℝ)
27 1red 11135 . . . . . . . . . . 11 (𝐵 ∈ ℝ → 1 ∈ ℝ)
28 id 22 . . . . . . . . . . 11 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ)
29 lttr 11211 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵))
3026, 27, 28, 29syl3anc 1373 . . . . . . . . . 10 (𝐵 ∈ ℝ → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵))
3110, 30mpani 696 . . . . . . . . 9 (𝐵 ∈ ℝ → (1 < 𝐵 → 0 < 𝐵))
3231imp 406 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 < 𝐵)
3325, 32elrpd 12953 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ∈ ℝ+)
3424, 33sylbi 217 . . . . . 6 (𝐵 ∈ (1(,)+∞) → 𝐵 ∈ ℝ+)
3534relogcld 26549 . . . . 5 (𝐵 ∈ (1(,)+∞) → (log‘𝐵) ∈ ℝ)
3635adantr 480 . . . 4 ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → (log‘𝐵) ∈ ℝ)
37 regt1loggt0 48541 . . . . 5 (𝐵 ∈ (1(,)+∞) → 0 < (log‘𝐵))
3837adantr 480 . . . 4 ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → 0 < (log‘𝐵))
39 ge0div 12011 . . . 4 (((log‘𝑋) ∈ ℝ ∧ (log‘𝐵) ∈ ℝ ∧ 0 < (log‘𝐵)) → (0 ≤ (log‘𝑋) ↔ 0 ≤ ((log‘𝑋) / (log‘𝐵))))
4021, 36, 38, 39syl3anc 1373 . . 3 ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → (0 ≤ (log‘𝑋) ↔ 0 ≤ ((log‘𝑋) / (log‘𝐵))))
418, 40mpbid 232 . 2 ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → 0 ≤ ((log‘𝑋) / (log‘𝐵)))
42 recn 11118 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
4342adantr 480 . . . . 5 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ∈ ℂ)
4432gt0ne0d 11703 . . . . 5 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ≠ 0)
4527, 28ltlend 11280 . . . . . 6 (𝐵 ∈ ℝ → (1 < 𝐵 ↔ (1 ≤ 𝐵𝐵 ≠ 1)))
4645simplbda 499 . . . . 5 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ≠ 1)
4743, 44, 463jca 1128 . . . 4 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1))
48 eldifpr 4612 . . . 4 (𝐵 ∈ (ℂ ∖ {0, 1}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1))
4947, 24, 483imtr4i 292 . . 3 (𝐵 ∈ (1(,)+∞) → 𝐵 ∈ (ℂ ∖ {0, 1}))
50 recn 11118 . . . . . 6 (𝑋 ∈ ℝ → 𝑋 ∈ ℂ)
5150adantr 480 . . . . 5 ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → 𝑋 ∈ ℂ)
5217gt0ne0d 11703 . . . . 5 ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → 𝑋 ≠ 0)
5351, 52jca 511 . . . 4 ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → (𝑋 ∈ ℂ ∧ 𝑋 ≠ 0))
54 eldifsn 4740 . . . 4 (𝑋 ∈ (ℂ ∖ {0}) ↔ (𝑋 ∈ ℂ ∧ 𝑋 ≠ 0))
5553, 3, 543imtr4i 292 . . 3 (𝑋 ∈ (1[,)+∞) → 𝑋 ∈ (ℂ ∖ {0}))
56 logbval 26693 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵)))
5749, 55, 56syl2an 596 . 2 ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵)))
5841, 57breqtrrd 5123 1 ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → 0 ≤ (𝐵 logb 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cdif 3902  {csn 4579  {cpr 4581   class class class wbr 5095  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029  +∞cpnf 11165  *cxr 11167   < clt 11168  cle 11169   / cdiv 11796  +crp 12912  (,)cioo 13267  [,)cico 13269  logclog 26480   logb clogb 26691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-z 12491  df-dec 12611  df-uz 12755  df-q 12869  df-rp 12913  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13271  df-ioc 13272  df-ico 13273  df-icc 13274  df-fz 13430  df-fzo 13577  df-fl 13715  df-mod 13793  df-seq 13928  df-exp 13988  df-fac 14200  df-bc 14229  df-hash 14257  df-shft 14993  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-limsup 15397  df-clim 15414  df-rlim 15415  df-sum 15613  df-ef 15993  df-sin 15995  df-cos 15996  df-pi 15998  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-mulr 17194  df-starv 17195  df-sca 17196  df-vsca 17197  df-ip 17198  df-tset 17199  df-ple 17200  df-ds 17202  df-unif 17203  df-hom 17204  df-cco 17205  df-rest 17345  df-topn 17346  df-0g 17364  df-gsum 17365  df-topgen 17366  df-pt 17367  df-prds 17370  df-xrs 17425  df-qtop 17430  df-imas 17431  df-xps 17433  df-mre 17507  df-mrc 17508  df-acs 17510  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-submnd 18677  df-mulg 18966  df-cntz 19215  df-cmn 19680  df-psmet 21272  df-xmet 21273  df-met 21274  df-bl 21275  df-mopn 21276  df-fbas 21277  df-fg 21278  df-cnfld 21281  df-top 22798  df-topon 22815  df-topsp 22837  df-bases 22850  df-cld 22923  df-ntr 22924  df-cls 22925  df-nei 23002  df-lp 23040  df-perf 23041  df-cn 23131  df-cnp 23132  df-haus 23219  df-tx 23466  df-hmeo 23659  df-fil 23750  df-fm 23842  df-flim 23843  df-flf 23844  df-xms 24225  df-ms 24226  df-tms 24227  df-cncf 24788  df-limc 25784  df-dv 25785  df-log 26482  df-logb 26692
This theorem is referenced by:  rege1logbzge0  48564
  Copyright terms: Public domain W3C validator