![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rege1logbrege0 | Structured version Visualization version GIF version |
Description: The general logarithm, with a real base greater than 1, for a real number greater than or equal to 1 is greater than or equal to 0. (Contributed by AV, 25-May-2020.) |
Ref | Expression |
---|---|
rege1logbrege0 | ⊢ ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → 0 ≤ (𝐵 logb 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 11236 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
2 | elicopnf 13446 | . . . . . . 7 ⊢ (1 ∈ ℝ → (𝑋 ∈ (1[,)+∞) ↔ (𝑋 ∈ ℝ ∧ 1 ≤ 𝑋))) | |
3 | 1, 2 | ax-mp 5 | . . . . . 6 ⊢ (𝑋 ∈ (1[,)+∞) ↔ (𝑋 ∈ ℝ ∧ 1 ≤ 𝑋)) |
4 | id 22 | . . . . . 6 ⊢ ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → (𝑋 ∈ ℝ ∧ 1 ≤ 𝑋)) | |
5 | 3, 4 | sylbi 216 | . . . . 5 ⊢ (𝑋 ∈ (1[,)+∞) → (𝑋 ∈ ℝ ∧ 1 ≤ 𝑋)) |
6 | 5 | adantl 481 | . . . 4 ⊢ ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → (𝑋 ∈ ℝ ∧ 1 ≤ 𝑋)) |
7 | logge0 26526 | . . . 4 ⊢ ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → 0 ≤ (log‘𝑋)) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → 0 ≤ (log‘𝑋)) |
9 | simpl 482 | . . . . . . . 8 ⊢ ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → 𝑋 ∈ ℝ) | |
10 | 0lt1 11758 | . . . . . . . . . 10 ⊢ 0 < 1 | |
11 | 0red 11239 | . . . . . . . . . . 11 ⊢ (𝑋 ∈ ℝ → 0 ∈ ℝ) | |
12 | 1red 11237 | . . . . . . . . . . 11 ⊢ (𝑋 ∈ ℝ → 1 ∈ ℝ) | |
13 | id 22 | . . . . . . . . . . 11 ⊢ (𝑋 ∈ ℝ → 𝑋 ∈ ℝ) | |
14 | ltletr 11328 | . . . . . . . . . . 11 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑋 ∈ ℝ) → ((0 < 1 ∧ 1 ≤ 𝑋) → 0 < 𝑋)) | |
15 | 11, 12, 13, 14 | syl3anc 1369 | . . . . . . . . . 10 ⊢ (𝑋 ∈ ℝ → ((0 < 1 ∧ 1 ≤ 𝑋) → 0 < 𝑋)) |
16 | 10, 15 | mpani 695 | . . . . . . . . 9 ⊢ (𝑋 ∈ ℝ → (1 ≤ 𝑋 → 0 < 𝑋)) |
17 | 16 | imp 406 | . . . . . . . 8 ⊢ ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → 0 < 𝑋) |
18 | 9, 17 | elrpd 13037 | . . . . . . 7 ⊢ ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → 𝑋 ∈ ℝ+) |
19 | 3, 18 | sylbi 216 | . . . . . 6 ⊢ (𝑋 ∈ (1[,)+∞) → 𝑋 ∈ ℝ+) |
20 | 19 | relogcld 26544 | . . . . 5 ⊢ (𝑋 ∈ (1[,)+∞) → (log‘𝑋) ∈ ℝ) |
21 | 20 | adantl 481 | . . . 4 ⊢ ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → (log‘𝑋) ∈ ℝ) |
22 | 1xr 11295 | . . . . . . . 8 ⊢ 1 ∈ ℝ* | |
23 | elioopnf 13444 | . . . . . . . 8 ⊢ (1 ∈ ℝ* → (𝐵 ∈ (1(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 1 < 𝐵))) | |
24 | 22, 23 | ax-mp 5 | . . . . . . 7 ⊢ (𝐵 ∈ (1(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) |
25 | simpl 482 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ∈ ℝ) | |
26 | 0red 11239 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ ℝ → 0 ∈ ℝ) | |
27 | 1red 11237 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ ℝ → 1 ∈ ℝ) | |
28 | id 22 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ) | |
29 | lttr 11312 | . . . . . . . . . . 11 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵)) | |
30 | 26, 27, 28, 29 | syl3anc 1369 | . . . . . . . . . 10 ⊢ (𝐵 ∈ ℝ → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵)) |
31 | 10, 30 | mpani 695 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℝ → (1 < 𝐵 → 0 < 𝐵)) |
32 | 31 | imp 406 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 < 𝐵) |
33 | 25, 32 | elrpd 13037 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ∈ ℝ+) |
34 | 24, 33 | sylbi 216 | . . . . . 6 ⊢ (𝐵 ∈ (1(,)+∞) → 𝐵 ∈ ℝ+) |
35 | 34 | relogcld 26544 | . . . . 5 ⊢ (𝐵 ∈ (1(,)+∞) → (log‘𝐵) ∈ ℝ) |
36 | 35 | adantr 480 | . . . 4 ⊢ ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → (log‘𝐵) ∈ ℝ) |
37 | regt1loggt0 47532 | . . . . 5 ⊢ (𝐵 ∈ (1(,)+∞) → 0 < (log‘𝐵)) | |
38 | 37 | adantr 480 | . . . 4 ⊢ ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → 0 < (log‘𝐵)) |
39 | ge0div 12103 | . . . 4 ⊢ (((log‘𝑋) ∈ ℝ ∧ (log‘𝐵) ∈ ℝ ∧ 0 < (log‘𝐵)) → (0 ≤ (log‘𝑋) ↔ 0 ≤ ((log‘𝑋) / (log‘𝐵)))) | |
40 | 21, 36, 38, 39 | syl3anc 1369 | . . 3 ⊢ ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → (0 ≤ (log‘𝑋) ↔ 0 ≤ ((log‘𝑋) / (log‘𝐵)))) |
41 | 8, 40 | mpbid 231 | . 2 ⊢ ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → 0 ≤ ((log‘𝑋) / (log‘𝐵))) |
42 | recn 11220 | . . . . . 6 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
43 | 42 | adantr 480 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ∈ ℂ) |
44 | 32 | gt0ne0d 11800 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ≠ 0) |
45 | 27, 28 | ltlend 11381 | . . . . . 6 ⊢ (𝐵 ∈ ℝ → (1 < 𝐵 ↔ (1 ≤ 𝐵 ∧ 𝐵 ≠ 1))) |
46 | 45 | simplbda 499 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ≠ 1) |
47 | 43, 44, 46 | 3jca 1126 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1)) |
48 | eldifpr 4656 | . . . 4 ⊢ (𝐵 ∈ (ℂ ∖ {0, 1}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1)) | |
49 | 47, 24, 48 | 3imtr4i 292 | . . 3 ⊢ (𝐵 ∈ (1(,)+∞) → 𝐵 ∈ (ℂ ∖ {0, 1})) |
50 | recn 11220 | . . . . . 6 ⊢ (𝑋 ∈ ℝ → 𝑋 ∈ ℂ) | |
51 | 50 | adantr 480 | . . . . 5 ⊢ ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → 𝑋 ∈ ℂ) |
52 | 17 | gt0ne0d 11800 | . . . . 5 ⊢ ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → 𝑋 ≠ 0) |
53 | 51, 52 | jca 511 | . . . 4 ⊢ ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → (𝑋 ∈ ℂ ∧ 𝑋 ≠ 0)) |
54 | eldifsn 4786 | . . . 4 ⊢ (𝑋 ∈ (ℂ ∖ {0}) ↔ (𝑋 ∈ ℂ ∧ 𝑋 ≠ 0)) | |
55 | 53, 3, 54 | 3imtr4i 292 | . . 3 ⊢ (𝑋 ∈ (1[,)+∞) → 𝑋 ∈ (ℂ ∖ {0})) |
56 | logbval 26685 | . . 3 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵))) | |
57 | 49, 55, 56 | syl2an 595 | . 2 ⊢ ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵))) |
58 | 41, 57 | breqtrrd 5170 | 1 ⊢ ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → 0 ≤ (𝐵 logb 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 ∖ cdif 3941 {csn 4624 {cpr 4626 class class class wbr 5142 ‘cfv 6542 (class class class)co 7414 ℂcc 11128 ℝcr 11129 0cc0 11130 1c1 11131 +∞cpnf 11267 ℝ*cxr 11269 < clt 11270 ≤ cle 11271 / cdiv 11893 ℝ+crp 12998 (,)cioo 13348 [,)cico 13350 logclog 26475 logb clogb 26683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9656 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 ax-pre-sup 11208 ax-addf 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8718 df-map 8838 df-pm 8839 df-ixp 8908 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-fsupp 9378 df-fi 9426 df-sup 9457 df-inf 9458 df-oi 9525 df-card 9954 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-div 11894 df-nn 12235 df-2 12297 df-3 12298 df-4 12299 df-5 12300 df-6 12301 df-7 12302 df-8 12303 df-9 12304 df-n0 12495 df-z 12581 df-dec 12700 df-uz 12845 df-q 12955 df-rp 12999 df-xneg 13116 df-xadd 13117 df-xmul 13118 df-ioo 13352 df-ioc 13353 df-ico 13354 df-icc 13355 df-fz 13509 df-fzo 13652 df-fl 13781 df-mod 13859 df-seq 13991 df-exp 14051 df-fac 14257 df-bc 14286 df-hash 14314 df-shft 15038 df-cj 15070 df-re 15071 df-im 15072 df-sqrt 15206 df-abs 15207 df-limsup 15439 df-clim 15456 df-rlim 15457 df-sum 15657 df-ef 16035 df-sin 16037 df-cos 16038 df-pi 16040 df-struct 17107 df-sets 17124 df-slot 17142 df-ndx 17154 df-base 17172 df-ress 17201 df-plusg 17237 df-mulr 17238 df-starv 17239 df-sca 17240 df-vsca 17241 df-ip 17242 df-tset 17243 df-ple 17244 df-ds 17246 df-unif 17247 df-hom 17248 df-cco 17249 df-rest 17395 df-topn 17396 df-0g 17414 df-gsum 17415 df-topgen 17416 df-pt 17417 df-prds 17420 df-xrs 17475 df-qtop 17480 df-imas 17481 df-xps 17483 df-mre 17557 df-mrc 17558 df-acs 17560 df-mgm 18591 df-sgrp 18670 df-mnd 18686 df-submnd 18732 df-mulg 19015 df-cntz 19259 df-cmn 19728 df-psmet 21258 df-xmet 21259 df-met 21260 df-bl 21261 df-mopn 21262 df-fbas 21263 df-fg 21264 df-cnfld 21267 df-top 22783 df-topon 22800 df-topsp 22822 df-bases 22836 df-cld 22910 df-ntr 22911 df-cls 22912 df-nei 22989 df-lp 23027 df-perf 23028 df-cn 23118 df-cnp 23119 df-haus 23206 df-tx 23453 df-hmeo 23646 df-fil 23737 df-fm 23829 df-flim 23830 df-flf 23831 df-xms 24213 df-ms 24214 df-tms 24215 df-cncf 24785 df-limc 25782 df-dv 25783 df-log 26477 df-logb 26684 |
This theorem is referenced by: rege1logbzge0 47555 |
Copyright terms: Public domain | W3C validator |