Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rege1logbrege0 Structured version   Visualization version   GIF version

Theorem rege1logbrege0 48547
Description: The general logarithm, with a real base greater than 1, for a real number greater than or equal to 1 is greater than or equal to 0. (Contributed by AV, 25-May-2020.)
Assertion
Ref Expression
rege1logbrege0 ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → 0 ≤ (𝐵 logb 𝑋))

Proof of Theorem rege1logbrege0
StepHypRef Expression
1 1re 11174 . . . . . . 7 1 ∈ ℝ
2 elicopnf 13406 . . . . . . 7 (1 ∈ ℝ → (𝑋 ∈ (1[,)+∞) ↔ (𝑋 ∈ ℝ ∧ 1 ≤ 𝑋)))
31, 2ax-mp 5 . . . . . 6 (𝑋 ∈ (1[,)+∞) ↔ (𝑋 ∈ ℝ ∧ 1 ≤ 𝑋))
4 id 22 . . . . . 6 ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → (𝑋 ∈ ℝ ∧ 1 ≤ 𝑋))
53, 4sylbi 217 . . . . 5 (𝑋 ∈ (1[,)+∞) → (𝑋 ∈ ℝ ∧ 1 ≤ 𝑋))
65adantl 481 . . . 4 ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → (𝑋 ∈ ℝ ∧ 1 ≤ 𝑋))
7 logge0 26514 . . . 4 ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → 0 ≤ (log‘𝑋))
86, 7syl 17 . . 3 ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → 0 ≤ (log‘𝑋))
9 simpl 482 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → 𝑋 ∈ ℝ)
10 0lt1 11700 . . . . . . . . . 10 0 < 1
11 0red 11177 . . . . . . . . . . 11 (𝑋 ∈ ℝ → 0 ∈ ℝ)
12 1red 11175 . . . . . . . . . . 11 (𝑋 ∈ ℝ → 1 ∈ ℝ)
13 id 22 . . . . . . . . . . 11 (𝑋 ∈ ℝ → 𝑋 ∈ ℝ)
14 ltletr 11266 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑋 ∈ ℝ) → ((0 < 1 ∧ 1 ≤ 𝑋) → 0 < 𝑋))
1511, 12, 13, 14syl3anc 1373 . . . . . . . . . 10 (𝑋 ∈ ℝ → ((0 < 1 ∧ 1 ≤ 𝑋) → 0 < 𝑋))
1610, 15mpani 696 . . . . . . . . 9 (𝑋 ∈ ℝ → (1 ≤ 𝑋 → 0 < 𝑋))
1716imp 406 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → 0 < 𝑋)
189, 17elrpd 12992 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → 𝑋 ∈ ℝ+)
193, 18sylbi 217 . . . . . 6 (𝑋 ∈ (1[,)+∞) → 𝑋 ∈ ℝ+)
2019relogcld 26532 . . . . 5 (𝑋 ∈ (1[,)+∞) → (log‘𝑋) ∈ ℝ)
2120adantl 481 . . . 4 ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → (log‘𝑋) ∈ ℝ)
22 1xr 11233 . . . . . . . 8 1 ∈ ℝ*
23 elioopnf 13404 . . . . . . . 8 (1 ∈ ℝ* → (𝐵 ∈ (1(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 1 < 𝐵)))
2422, 23ax-mp 5 . . . . . . 7 (𝐵 ∈ (1(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 1 < 𝐵))
25 simpl 482 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ∈ ℝ)
26 0red 11177 . . . . . . . . . . 11 (𝐵 ∈ ℝ → 0 ∈ ℝ)
27 1red 11175 . . . . . . . . . . 11 (𝐵 ∈ ℝ → 1 ∈ ℝ)
28 id 22 . . . . . . . . . . 11 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ)
29 lttr 11250 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵))
3026, 27, 28, 29syl3anc 1373 . . . . . . . . . 10 (𝐵 ∈ ℝ → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵))
3110, 30mpani 696 . . . . . . . . 9 (𝐵 ∈ ℝ → (1 < 𝐵 → 0 < 𝐵))
3231imp 406 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 < 𝐵)
3325, 32elrpd 12992 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ∈ ℝ+)
3424, 33sylbi 217 . . . . . 6 (𝐵 ∈ (1(,)+∞) → 𝐵 ∈ ℝ+)
3534relogcld 26532 . . . . 5 (𝐵 ∈ (1(,)+∞) → (log‘𝐵) ∈ ℝ)
3635adantr 480 . . . 4 ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → (log‘𝐵) ∈ ℝ)
37 regt1loggt0 48525 . . . . 5 (𝐵 ∈ (1(,)+∞) → 0 < (log‘𝐵))
3837adantr 480 . . . 4 ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → 0 < (log‘𝐵))
39 ge0div 12050 . . . 4 (((log‘𝑋) ∈ ℝ ∧ (log‘𝐵) ∈ ℝ ∧ 0 < (log‘𝐵)) → (0 ≤ (log‘𝑋) ↔ 0 ≤ ((log‘𝑋) / (log‘𝐵))))
4021, 36, 38, 39syl3anc 1373 . . 3 ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → (0 ≤ (log‘𝑋) ↔ 0 ≤ ((log‘𝑋) / (log‘𝐵))))
418, 40mpbid 232 . 2 ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → 0 ≤ ((log‘𝑋) / (log‘𝐵)))
42 recn 11158 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
4342adantr 480 . . . . 5 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ∈ ℂ)
4432gt0ne0d 11742 . . . . 5 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ≠ 0)
4527, 28ltlend 11319 . . . . . 6 (𝐵 ∈ ℝ → (1 < 𝐵 ↔ (1 ≤ 𝐵𝐵 ≠ 1)))
4645simplbda 499 . . . . 5 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ≠ 1)
4743, 44, 463jca 1128 . . . 4 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1))
48 eldifpr 4622 . . . 4 (𝐵 ∈ (ℂ ∖ {0, 1}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1))
4947, 24, 483imtr4i 292 . . 3 (𝐵 ∈ (1(,)+∞) → 𝐵 ∈ (ℂ ∖ {0, 1}))
50 recn 11158 . . . . . 6 (𝑋 ∈ ℝ → 𝑋 ∈ ℂ)
5150adantr 480 . . . . 5 ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → 𝑋 ∈ ℂ)
5217gt0ne0d 11742 . . . . 5 ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → 𝑋 ≠ 0)
5351, 52jca 511 . . . 4 ((𝑋 ∈ ℝ ∧ 1 ≤ 𝑋) → (𝑋 ∈ ℂ ∧ 𝑋 ≠ 0))
54 eldifsn 4750 . . . 4 (𝑋 ∈ (ℂ ∖ {0}) ↔ (𝑋 ∈ ℂ ∧ 𝑋 ≠ 0))
5553, 3, 543imtr4i 292 . . 3 (𝑋 ∈ (1[,)+∞) → 𝑋 ∈ (ℂ ∖ {0}))
56 logbval 26676 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵)))
5749, 55, 56syl2an 596 . 2 ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵)))
5841, 57breqtrrd 5135 1 ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → 0 ≤ (𝐵 logb 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cdif 3911  {csn 4589  {cpr 4591   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069  +∞cpnf 11205  *cxr 11207   < clt 11208  cle 11209   / cdiv 11835  +crp 12951  (,)cioo 13306  [,)cico 13308  logclog 26463   logb clogb 26674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465  df-logb 26675
This theorem is referenced by:  rege1logbzge0  48548
  Copyright terms: Public domain W3C validator