| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relogbcxpb | Structured version Visualization version GIF version | ||
| Description: The logarithm is the inverse of the exponentiation. Observation in [Cohen4] p. 348. (Contributed by AV, 11-Jun-2020.) |
| Ref | Expression |
|---|---|
| relogbcxpb | ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ) → ((𝐵 logb 𝑋) = 𝑌 ↔ (𝐵↑𝑐𝑌) = 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7349 | . . . 4 ⊢ (𝑌 = (𝐵 logb 𝑋) → (𝐵↑𝑐𝑌) = (𝐵↑𝑐(𝐵 logb 𝑋))) | |
| 2 | 1 | eqcoms 2738 | . . 3 ⊢ ((𝐵 logb 𝑋) = 𝑌 → (𝐵↑𝑐𝑌) = (𝐵↑𝑐(𝐵 logb 𝑋))) |
| 3 | rpcn 12893 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℂ) | |
| 4 | 3 | adantr 480 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1) → 𝐵 ∈ ℂ) |
| 5 | rpne0 12899 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ≠ 0) | |
| 6 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1) → 𝐵 ≠ 0) |
| 7 | simpr 484 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1) → 𝐵 ≠ 1) | |
| 8 | eldifpr 4609 | . . . . . . 7 ⊢ (𝐵 ∈ (ℂ ∖ {0, 1}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1)) | |
| 9 | 4, 6, 7, 8 | syl3anbrc 1344 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1) → 𝐵 ∈ (ℂ ∖ {0, 1})) |
| 10 | rpcndif0 12903 | . . . . . 6 ⊢ (𝑋 ∈ ℝ+ → 𝑋 ∈ (ℂ ∖ {0})) | |
| 11 | 9, 10 | anim12i 613 | . . . . 5 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1) ∧ 𝑋 ∈ ℝ+) → (𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0}))) |
| 12 | 11 | 3adant3 1132 | . . . 4 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ) → (𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0}))) |
| 13 | cxplogb 26716 | . . . 4 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵↑𝑐(𝐵 logb 𝑋)) = 𝑋) | |
| 14 | 12, 13 | syl 17 | . . 3 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ) → (𝐵↑𝑐(𝐵 logb 𝑋)) = 𝑋) |
| 15 | 2, 14 | sylan9eqr 2787 | . 2 ⊢ ((((𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ) ∧ (𝐵 logb 𝑋) = 𝑌) → (𝐵↑𝑐𝑌) = 𝑋) |
| 16 | oveq2 7349 | . . . 4 ⊢ (𝑋 = (𝐵↑𝑐𝑌) → (𝐵 logb 𝑋) = (𝐵 logb (𝐵↑𝑐𝑌))) | |
| 17 | 16 | eqcoms 2738 | . . 3 ⊢ ((𝐵↑𝑐𝑌) = 𝑋 → (𝐵 logb 𝑋) = (𝐵 logb (𝐵↑𝑐𝑌))) |
| 18 | eldifsn 4736 | . . . . . . 7 ⊢ (𝐵 ∈ (ℝ+ ∖ {1}) ↔ (𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1)) | |
| 19 | 18 | biimpri 228 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1) → 𝐵 ∈ (ℝ+ ∖ {1})) |
| 20 | 19 | anim1i 615 | . . . . 5 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1) ∧ 𝑌 ∈ ℝ) → (𝐵 ∈ (ℝ+ ∖ {1}) ∧ 𝑌 ∈ ℝ)) |
| 21 | 20 | 3adant2 1131 | . . . 4 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ) → (𝐵 ∈ (ℝ+ ∖ {1}) ∧ 𝑌 ∈ ℝ)) |
| 22 | relogbcxp 26715 | . . . 4 ⊢ ((𝐵 ∈ (ℝ+ ∖ {1}) ∧ 𝑌 ∈ ℝ) → (𝐵 logb (𝐵↑𝑐𝑌)) = 𝑌) | |
| 23 | 21, 22 | syl 17 | . . 3 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ) → (𝐵 logb (𝐵↑𝑐𝑌)) = 𝑌) |
| 24 | 17, 23 | sylan9eqr 2787 | . 2 ⊢ ((((𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ) ∧ (𝐵↑𝑐𝑌) = 𝑋) → (𝐵 logb 𝑋) = 𝑌) |
| 25 | 15, 24 | impbida 800 | 1 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ) → ((𝐵 logb 𝑋) = 𝑌 ↔ (𝐵↑𝑐𝑌) = 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ≠ wne 2926 ∖ cdif 3897 {csn 4574 {cpr 4576 (class class class)co 7341 ℂcc 10996 ℝcr 10997 0cc0 10998 1c1 10999 ℝ+crp 12882 ↑𝑐ccxp 26484 logb clogb 26694 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-inf2 9526 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 ax-addf 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-fi 9290 df-sup 9321 df-inf 9322 df-oi 9391 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-z 12461 df-dec 12581 df-uz 12725 df-q 12839 df-rp 12883 df-xneg 13003 df-xadd 13004 df-xmul 13005 df-ioo 13241 df-ioc 13242 df-ico 13243 df-icc 13244 df-fz 13400 df-fzo 13547 df-fl 13688 df-mod 13766 df-seq 13901 df-exp 13961 df-fac 14173 df-bc 14202 df-hash 14230 df-shft 14966 df-cj 14998 df-re 14999 df-im 15000 df-sqrt 15134 df-abs 15135 df-limsup 15370 df-clim 15387 df-rlim 15388 df-sum 15586 df-ef 15966 df-sin 15968 df-cos 15969 df-pi 15971 df-struct 17050 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-starv 17168 df-sca 17169 df-vsca 17170 df-ip 17171 df-tset 17172 df-ple 17173 df-ds 17175 df-unif 17176 df-hom 17177 df-cco 17178 df-rest 17318 df-topn 17319 df-0g 17337 df-gsum 17338 df-topgen 17339 df-pt 17340 df-prds 17343 df-xrs 17398 df-qtop 17403 df-imas 17404 df-xps 17406 df-mre 17480 df-mrc 17481 df-acs 17483 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-submnd 18684 df-mulg 18973 df-cntz 19222 df-cmn 19687 df-psmet 21276 df-xmet 21277 df-met 21278 df-bl 21279 df-mopn 21280 df-fbas 21281 df-fg 21282 df-cnfld 21285 df-top 22802 df-topon 22819 df-topsp 22841 df-bases 22854 df-cld 22927 df-ntr 22928 df-cls 22929 df-nei 23006 df-lp 23044 df-perf 23045 df-cn 23135 df-cnp 23136 df-haus 23223 df-tx 23470 df-hmeo 23663 df-fil 23754 df-fm 23846 df-flim 23847 df-flf 23848 df-xms 24228 df-ms 24229 df-tms 24230 df-cncf 24791 df-limc 25787 df-dv 25788 df-log 26485 df-cxp 26486 df-logb 26695 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |