Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relogbcxpb | Structured version Visualization version GIF version |
Description: The logarithm is the inverse of the exponentiation. Observation in [Cohen4] p. 348. (Contributed by AV, 11-Jun-2020.) |
Ref | Expression |
---|---|
relogbcxpb | ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ) → ((𝐵 logb 𝑋) = 𝑌 ↔ (𝐵↑𝑐𝑌) = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7226 | . . . 4 ⊢ (𝑌 = (𝐵 logb 𝑋) → (𝐵↑𝑐𝑌) = (𝐵↑𝑐(𝐵 logb 𝑋))) | |
2 | 1 | eqcoms 2745 | . . 3 ⊢ ((𝐵 logb 𝑋) = 𝑌 → (𝐵↑𝑐𝑌) = (𝐵↑𝑐(𝐵 logb 𝑋))) |
3 | rpcn 12601 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℂ) | |
4 | 3 | adantr 484 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1) → 𝐵 ∈ ℂ) |
5 | rpne0 12607 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ≠ 0) | |
6 | 5 | adantr 484 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1) → 𝐵 ≠ 0) |
7 | simpr 488 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1) → 𝐵 ≠ 1) | |
8 | eldifpr 4578 | . . . . . . 7 ⊢ (𝐵 ∈ (ℂ ∖ {0, 1}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1)) | |
9 | 4, 6, 7, 8 | syl3anbrc 1345 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1) → 𝐵 ∈ (ℂ ∖ {0, 1})) |
10 | rpcndif0 12610 | . . . . . 6 ⊢ (𝑋 ∈ ℝ+ → 𝑋 ∈ (ℂ ∖ {0})) | |
11 | 9, 10 | anim12i 616 | . . . . 5 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1) ∧ 𝑋 ∈ ℝ+) → (𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0}))) |
12 | 11 | 3adant3 1134 | . . . 4 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ) → (𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0}))) |
13 | cxplogb 25674 | . . . 4 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵↑𝑐(𝐵 logb 𝑋)) = 𝑋) | |
14 | 12, 13 | syl 17 | . . 3 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ) → (𝐵↑𝑐(𝐵 logb 𝑋)) = 𝑋) |
15 | 2, 14 | sylan9eqr 2800 | . 2 ⊢ ((((𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ) ∧ (𝐵 logb 𝑋) = 𝑌) → (𝐵↑𝑐𝑌) = 𝑋) |
16 | oveq2 7226 | . . . 4 ⊢ (𝑋 = (𝐵↑𝑐𝑌) → (𝐵 logb 𝑋) = (𝐵 logb (𝐵↑𝑐𝑌))) | |
17 | 16 | eqcoms 2745 | . . 3 ⊢ ((𝐵↑𝑐𝑌) = 𝑋 → (𝐵 logb 𝑋) = (𝐵 logb (𝐵↑𝑐𝑌))) |
18 | eldifsn 4705 | . . . . . . 7 ⊢ (𝐵 ∈ (ℝ+ ∖ {1}) ↔ (𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1)) | |
19 | 18 | biimpri 231 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1) → 𝐵 ∈ (ℝ+ ∖ {1})) |
20 | 19 | anim1i 618 | . . . . 5 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1) ∧ 𝑌 ∈ ℝ) → (𝐵 ∈ (ℝ+ ∖ {1}) ∧ 𝑌 ∈ ℝ)) |
21 | 20 | 3adant2 1133 | . . . 4 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ) → (𝐵 ∈ (ℝ+ ∖ {1}) ∧ 𝑌 ∈ ℝ)) |
22 | relogbcxp 25673 | . . . 4 ⊢ ((𝐵 ∈ (ℝ+ ∖ {1}) ∧ 𝑌 ∈ ℝ) → (𝐵 logb (𝐵↑𝑐𝑌)) = 𝑌) | |
23 | 21, 22 | syl 17 | . . 3 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ) → (𝐵 logb (𝐵↑𝑐𝑌)) = 𝑌) |
24 | 17, 23 | sylan9eqr 2800 | . 2 ⊢ ((((𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ) ∧ (𝐵↑𝑐𝑌) = 𝑋) → (𝐵 logb 𝑋) = 𝑌) |
25 | 15, 24 | impbida 801 | 1 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ) → ((𝐵 logb 𝑋) = 𝑌 ↔ (𝐵↑𝑐𝑌) = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 ∖ cdif 3868 {csn 4546 {cpr 4548 (class class class)co 7218 ℂcc 10732 ℝcr 10733 0cc0 10734 1c1 10735 ℝ+crp 12591 ↑𝑐ccxp 25449 logb clogb 25652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5184 ax-sep 5197 ax-nul 5204 ax-pow 5263 ax-pr 5327 ax-un 7528 ax-inf2 9261 ax-cnex 10790 ax-resscn 10791 ax-1cn 10792 ax-icn 10793 ax-addcl 10794 ax-addrcl 10795 ax-mulcl 10796 ax-mulrcl 10797 ax-mulcom 10798 ax-addass 10799 ax-mulass 10800 ax-distr 10801 ax-i2m1 10802 ax-1ne0 10803 ax-1rid 10804 ax-rnegex 10805 ax-rrecex 10806 ax-cnre 10807 ax-pre-lttri 10808 ax-pre-lttrn 10809 ax-pre-ltadd 10810 ax-pre-mulgt0 10811 ax-pre-sup 10812 ax-addf 10813 ax-mulf 10814 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3415 df-sbc 3700 df-csb 3817 df-dif 3874 df-un 3876 df-in 3878 df-ss 3888 df-pss 3890 df-nul 4243 df-if 4445 df-pw 4520 df-sn 4547 df-pr 4549 df-tp 4551 df-op 4553 df-uni 4825 df-int 4865 df-iun 4911 df-iin 4912 df-br 5059 df-opab 5121 df-mpt 5141 df-tr 5167 df-id 5460 df-eprel 5465 df-po 5473 df-so 5474 df-fr 5514 df-se 5515 df-we 5516 df-xp 5562 df-rel 5563 df-cnv 5564 df-co 5565 df-dm 5566 df-rn 5567 df-res 5568 df-ima 5569 df-pred 6165 df-ord 6221 df-on 6222 df-lim 6223 df-suc 6224 df-iota 6343 df-fun 6387 df-fn 6388 df-f 6389 df-f1 6390 df-fo 6391 df-f1o 6392 df-fv 6393 df-isom 6394 df-riota 7175 df-ov 7221 df-oprab 7222 df-mpo 7223 df-of 7474 df-om 7650 df-1st 7766 df-2nd 7767 df-supp 7909 df-wrecs 8052 df-recs 8113 df-rdg 8151 df-1o 8207 df-2o 8208 df-er 8396 df-map 8515 df-pm 8516 df-ixp 8584 df-en 8632 df-dom 8633 df-sdom 8634 df-fin 8635 df-fsupp 8991 df-fi 9032 df-sup 9063 df-inf 9064 df-oi 9131 df-card 9560 df-pnf 10874 df-mnf 10875 df-xr 10876 df-ltxr 10877 df-le 10878 df-sub 11069 df-neg 11070 df-div 11495 df-nn 11836 df-2 11898 df-3 11899 df-4 11900 df-5 11901 df-6 11902 df-7 11903 df-8 11904 df-9 11905 df-n0 12096 df-z 12182 df-dec 12299 df-uz 12444 df-q 12550 df-rp 12592 df-xneg 12709 df-xadd 12710 df-xmul 12711 df-ioo 12944 df-ioc 12945 df-ico 12946 df-icc 12947 df-fz 13101 df-fzo 13244 df-fl 13372 df-mod 13448 df-seq 13580 df-exp 13641 df-fac 13845 df-bc 13874 df-hash 13902 df-shft 14635 df-cj 14667 df-re 14668 df-im 14669 df-sqrt 14803 df-abs 14804 df-limsup 15037 df-clim 15054 df-rlim 15055 df-sum 15255 df-ef 15634 df-sin 15636 df-cos 15637 df-pi 15639 df-struct 16705 df-sets 16722 df-slot 16740 df-ndx 16750 df-base 16766 df-ress 16790 df-plusg 16820 df-mulr 16821 df-starv 16822 df-sca 16823 df-vsca 16824 df-ip 16825 df-tset 16826 df-ple 16827 df-ds 16829 df-unif 16830 df-hom 16831 df-cco 16832 df-rest 16932 df-topn 16933 df-0g 16951 df-gsum 16952 df-topgen 16953 df-pt 16954 df-prds 16957 df-xrs 17012 df-qtop 17017 df-imas 17018 df-xps 17020 df-mre 17094 df-mrc 17095 df-acs 17097 df-mgm 18119 df-sgrp 18168 df-mnd 18179 df-submnd 18224 df-mulg 18494 df-cntz 18716 df-cmn 19177 df-psmet 20360 df-xmet 20361 df-met 20362 df-bl 20363 df-mopn 20364 df-fbas 20365 df-fg 20366 df-cnfld 20369 df-top 21796 df-topon 21813 df-topsp 21835 df-bases 21848 df-cld 21921 df-ntr 21922 df-cls 21923 df-nei 22000 df-lp 22038 df-perf 22039 df-cn 22129 df-cnp 22130 df-haus 22217 df-tx 22464 df-hmeo 22657 df-fil 22748 df-fm 22840 df-flim 22841 df-flf 22842 df-xms 23223 df-ms 23224 df-tms 23225 df-cncf 23780 df-limc 24768 df-dv 24769 df-log 25450 df-cxp 25451 df-logb 25653 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |