![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sqrt2cxp2logb9e3 | Structured version Visualization version GIF version |
Description: The square root of two to the power of the logarithm of nine to base two is three. (√‘2) and (2 logb 9) are irrational numbers (see sqrt2irr0 16219 resp. 2logb9irr 26714), satisfying the statement in 2irrexpqALT 26719. (Contributed by AV, 29-Dec-2022.) |
Ref | Expression |
---|---|
sqrt2cxp2logb9e3 | ⊢ ((√‘2)↑𝑐(2 logb 9)) = 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 12309 | . . . . . 6 ⊢ 2 ∈ ℂ | |
2 | cxpsqrt 26624 | . . . . . 6 ⊢ (2 ∈ ℂ → (2↑𝑐(1 / 2)) = (√‘2)) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ (2↑𝑐(1 / 2)) = (√‘2) |
4 | 3 | eqcomi 2736 | . . . 4 ⊢ (√‘2) = (2↑𝑐(1 / 2)) |
5 | 4 | oveq1i 7424 | . . 3 ⊢ ((√‘2)↑𝑐(2 logb 9)) = ((2↑𝑐(1 / 2))↑𝑐(2 logb 9)) |
6 | 2rp 13003 | . . . 4 ⊢ 2 ∈ ℝ+ | |
7 | halfre 12448 | . . . 4 ⊢ (1 / 2) ∈ ℝ | |
8 | 2z 12616 | . . . . . 6 ⊢ 2 ∈ ℤ | |
9 | uzid 12859 | . . . . . 6 ⊢ (2 ∈ ℤ → 2 ∈ (ℤ≥‘2)) | |
10 | 8, 9 | ax-mp 5 | . . . . 5 ⊢ 2 ∈ (ℤ≥‘2) |
11 | 9nn 12332 | . . . . . 6 ⊢ 9 ∈ ℕ | |
12 | nnrp 13009 | . . . . . 6 ⊢ (9 ∈ ℕ → 9 ∈ ℝ+) | |
13 | 11, 12 | ax-mp 5 | . . . . 5 ⊢ 9 ∈ ℝ+ |
14 | relogbzcl 26693 | . . . . 5 ⊢ ((2 ∈ (ℤ≥‘2) ∧ 9 ∈ ℝ+) → (2 logb 9) ∈ ℝ) | |
15 | 10, 13, 14 | mp2an 691 | . . . 4 ⊢ (2 logb 9) ∈ ℝ |
16 | cxpcom 26660 | . . . 4 ⊢ ((2 ∈ ℝ+ ∧ (1 / 2) ∈ ℝ ∧ (2 logb 9) ∈ ℝ) → ((2↑𝑐(1 / 2))↑𝑐(2 logb 9)) = ((2↑𝑐(2 logb 9))↑𝑐(1 / 2))) | |
17 | 6, 7, 15, 16 | mp3an 1458 | . . 3 ⊢ ((2↑𝑐(1 / 2))↑𝑐(2 logb 9)) = ((2↑𝑐(2 logb 9))↑𝑐(1 / 2)) |
18 | 15 | recni 11250 | . . . . 5 ⊢ (2 logb 9) ∈ ℂ |
19 | cxpcl 26595 | . . . . 5 ⊢ ((2 ∈ ℂ ∧ (2 logb 9) ∈ ℂ) → (2↑𝑐(2 logb 9)) ∈ ℂ) | |
20 | 1, 18, 19 | mp2an 691 | . . . 4 ⊢ (2↑𝑐(2 logb 9)) ∈ ℂ |
21 | cxpsqrt 26624 | . . . 4 ⊢ ((2↑𝑐(2 logb 9)) ∈ ℂ → ((2↑𝑐(2 logb 9))↑𝑐(1 / 2)) = (√‘(2↑𝑐(2 logb 9)))) | |
22 | 20, 21 | ax-mp 5 | . . 3 ⊢ ((2↑𝑐(2 logb 9))↑𝑐(1 / 2)) = (√‘(2↑𝑐(2 logb 9))) |
23 | 5, 17, 22 | 3eqtri 2759 | . 2 ⊢ ((√‘2)↑𝑐(2 logb 9)) = (√‘(2↑𝑐(2 logb 9))) |
24 | 2ne0 12338 | . . . . 5 ⊢ 2 ≠ 0 | |
25 | 1ne2 12442 | . . . . . 6 ⊢ 1 ≠ 2 | |
26 | 25 | necomi 2990 | . . . . 5 ⊢ 2 ≠ 1 |
27 | eldifpr 4656 | . . . . 5 ⊢ (2 ∈ (ℂ ∖ {0, 1}) ↔ (2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1)) | |
28 | 1, 24, 26, 27 | mpbir3an 1339 | . . . 4 ⊢ 2 ∈ (ℂ ∖ {0, 1}) |
29 | 9cn 12334 | . . . . 5 ⊢ 9 ∈ ℂ | |
30 | 9re 12333 | . . . . . 6 ⊢ 9 ∈ ℝ | |
31 | 9pos 12347 | . . . . . 6 ⊢ 0 < 9 | |
32 | 30, 31 | gt0ne0ii 11772 | . . . . 5 ⊢ 9 ≠ 0 |
33 | eldifsn 4786 | . . . . 5 ⊢ (9 ∈ (ℂ ∖ {0}) ↔ (9 ∈ ℂ ∧ 9 ≠ 0)) | |
34 | 29, 32, 33 | mpbir2an 710 | . . . 4 ⊢ 9 ∈ (ℂ ∖ {0}) |
35 | cxplogb 26705 | . . . 4 ⊢ ((2 ∈ (ℂ ∖ {0, 1}) ∧ 9 ∈ (ℂ ∖ {0})) → (2↑𝑐(2 logb 9)) = 9) | |
36 | 28, 34, 35 | mp2an 691 | . . 3 ⊢ (2↑𝑐(2 logb 9)) = 9 |
37 | 36 | fveq2i 6894 | . 2 ⊢ (√‘(2↑𝑐(2 logb 9))) = (√‘9) |
38 | sqrt9 15244 | . 2 ⊢ (√‘9) = 3 | |
39 | 23, 37, 38 | 3eqtri 2759 | 1 ⊢ ((√‘2)↑𝑐(2 logb 9)) = 3 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 ≠ wne 2935 ∖ cdif 3941 {csn 4624 {cpr 4626 ‘cfv 6542 (class class class)co 7414 ℂcc 11128 ℝcr 11129 0cc0 11130 1c1 11131 / cdiv 11893 ℕcn 12234 2c2 12289 3c3 12290 9c9 12296 ℤcz 12580 ℤ≥cuz 12844 ℝ+crp 12998 √csqrt 15204 ↑𝑐ccxp 26476 logb clogb 26683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9656 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 ax-pre-sup 11208 ax-addf 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8718 df-map 8838 df-pm 8839 df-ixp 8908 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-fsupp 9378 df-fi 9426 df-sup 9457 df-inf 9458 df-oi 9525 df-card 9954 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-div 11894 df-nn 12235 df-2 12297 df-3 12298 df-4 12299 df-5 12300 df-6 12301 df-7 12302 df-8 12303 df-9 12304 df-n0 12495 df-z 12581 df-dec 12700 df-uz 12845 df-q 12955 df-rp 12999 df-xneg 13116 df-xadd 13117 df-xmul 13118 df-ioo 13352 df-ioc 13353 df-ico 13354 df-icc 13355 df-fz 13509 df-fzo 13652 df-fl 13781 df-mod 13859 df-seq 13991 df-exp 14051 df-fac 14257 df-bc 14286 df-hash 14314 df-shft 15038 df-cj 15070 df-re 15071 df-im 15072 df-sqrt 15206 df-abs 15207 df-limsup 15439 df-clim 15456 df-rlim 15457 df-sum 15657 df-ef 16035 df-sin 16037 df-cos 16038 df-pi 16040 df-struct 17107 df-sets 17124 df-slot 17142 df-ndx 17154 df-base 17172 df-ress 17201 df-plusg 17237 df-mulr 17238 df-starv 17239 df-sca 17240 df-vsca 17241 df-ip 17242 df-tset 17243 df-ple 17244 df-ds 17246 df-unif 17247 df-hom 17248 df-cco 17249 df-rest 17395 df-topn 17396 df-0g 17414 df-gsum 17415 df-topgen 17416 df-pt 17417 df-prds 17420 df-xrs 17475 df-qtop 17480 df-imas 17481 df-xps 17483 df-mre 17557 df-mrc 17558 df-acs 17560 df-mgm 18591 df-sgrp 18670 df-mnd 18686 df-submnd 18732 df-mulg 19015 df-cntz 19259 df-cmn 19728 df-psmet 21258 df-xmet 21259 df-met 21260 df-bl 21261 df-mopn 21262 df-fbas 21263 df-fg 21264 df-cnfld 21267 df-top 22783 df-topon 22800 df-topsp 22822 df-bases 22836 df-cld 22910 df-ntr 22911 df-cls 22912 df-nei 22989 df-lp 23027 df-perf 23028 df-cn 23118 df-cnp 23119 df-haus 23206 df-tx 23453 df-hmeo 23646 df-fil 23737 df-fm 23829 df-flim 23830 df-flf 23831 df-xms 24213 df-ms 24214 df-tms 24215 df-cncf 24785 df-limc 25782 df-dv 25783 df-log 26477 df-cxp 26478 df-logb 26684 |
This theorem is referenced by: 2irrexpqALT 26719 |
Copyright terms: Public domain | W3C validator |