MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrt2cxp2logb9e3 Structured version   Visualization version   GIF version

Theorem sqrt2cxp2logb9e3 26796
Description: The square root of two to the power of the logarithm of nine to base two is three. (√‘2) and (2 logb 9) are irrational numbers (see sqrt2irr0 16239 resp. 2logb9irr 26792), satisfying the statement in 2irrexpqALT 26797. (Contributed by AV, 29-Dec-2022.)
Assertion
Ref Expression
sqrt2cxp2logb9e3 ((√‘2)↑𝑐(2 logb 9)) = 3

Proof of Theorem sqrt2cxp2logb9e3
StepHypRef Expression
1 2cn 12325 . . . . . 6 2 ∈ ℂ
2 cxpsqrt 26699 . . . . . 6 (2 ∈ ℂ → (2↑𝑐(1 / 2)) = (√‘2))
31, 2ax-mp 5 . . . . 5 (2↑𝑐(1 / 2)) = (√‘2)
43eqcomi 2734 . . . 4 (√‘2) = (2↑𝑐(1 / 2))
54oveq1i 7429 . . 3 ((√‘2)↑𝑐(2 logb 9)) = ((2↑𝑐(1 / 2))↑𝑐(2 logb 9))
6 2rp 13019 . . . 4 2 ∈ ℝ+
7 halfre 12464 . . . 4 (1 / 2) ∈ ℝ
8 2z 12632 . . . . . 6 2 ∈ ℤ
9 uzid 12875 . . . . . 6 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
108, 9ax-mp 5 . . . . 5 2 ∈ (ℤ‘2)
11 9nn 12348 . . . . . 6 9 ∈ ℕ
12 nnrp 13025 . . . . . 6 (9 ∈ ℕ → 9 ∈ ℝ+)
1311, 12ax-mp 5 . . . . 5 9 ∈ ℝ+
14 relogbzcl 26771 . . . . 5 ((2 ∈ (ℤ‘2) ∧ 9 ∈ ℝ+) → (2 logb 9) ∈ ℝ)
1510, 13, 14mp2an 690 . . . 4 (2 logb 9) ∈ ℝ
16 cxpcom 26735 . . . 4 ((2 ∈ ℝ+ ∧ (1 / 2) ∈ ℝ ∧ (2 logb 9) ∈ ℝ) → ((2↑𝑐(1 / 2))↑𝑐(2 logb 9)) = ((2↑𝑐(2 logb 9))↑𝑐(1 / 2)))
176, 7, 15, 16mp3an 1457 . . 3 ((2↑𝑐(1 / 2))↑𝑐(2 logb 9)) = ((2↑𝑐(2 logb 9))↑𝑐(1 / 2))
1815recni 11265 . . . . 5 (2 logb 9) ∈ ℂ
19 cxpcl 26670 . . . . 5 ((2 ∈ ℂ ∧ (2 logb 9) ∈ ℂ) → (2↑𝑐(2 logb 9)) ∈ ℂ)
201, 18, 19mp2an 690 . . . 4 (2↑𝑐(2 logb 9)) ∈ ℂ
21 cxpsqrt 26699 . . . 4 ((2↑𝑐(2 logb 9)) ∈ ℂ → ((2↑𝑐(2 logb 9))↑𝑐(1 / 2)) = (√‘(2↑𝑐(2 logb 9))))
2220, 21ax-mp 5 . . 3 ((2↑𝑐(2 logb 9))↑𝑐(1 / 2)) = (√‘(2↑𝑐(2 logb 9)))
235, 17, 223eqtri 2757 . 2 ((√‘2)↑𝑐(2 logb 9)) = (√‘(2↑𝑐(2 logb 9)))
24 2ne0 12354 . . . . 5 2 ≠ 0
25 1ne2 12458 . . . . . 6 1 ≠ 2
2625necomi 2984 . . . . 5 2 ≠ 1
27 eldifpr 4662 . . . . 5 (2 ∈ (ℂ ∖ {0, 1}) ↔ (2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1))
281, 24, 26, 27mpbir3an 1338 . . . 4 2 ∈ (ℂ ∖ {0, 1})
29 9cn 12350 . . . . 5 9 ∈ ℂ
30 9re 12349 . . . . . 6 9 ∈ ℝ
31 9pos 12363 . . . . . 6 0 < 9
3230, 31gt0ne0ii 11787 . . . . 5 9 ≠ 0
33 eldifsn 4792 . . . . 5 (9 ∈ (ℂ ∖ {0}) ↔ (9 ∈ ℂ ∧ 9 ≠ 0))
3429, 32, 33mpbir2an 709 . . . 4 9 ∈ (ℂ ∖ {0})
35 cxplogb 26783 . . . 4 ((2 ∈ (ℂ ∖ {0, 1}) ∧ 9 ∈ (ℂ ∖ {0})) → (2↑𝑐(2 logb 9)) = 9)
3628, 34, 35mp2an 690 . . 3 (2↑𝑐(2 logb 9)) = 9
3736fveq2i 6899 . 2 (√‘(2↑𝑐(2 logb 9))) = (√‘9)
38 sqrt9 15264 . 2 (√‘9) = 3
3923, 37, 383eqtri 2757 1 ((√‘2)↑𝑐(2 logb 9)) = 3
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2098  wne 2929  cdif 3941  {csn 4630  {cpr 4632  cfv 6549  (class class class)co 7419  cc 11143  cr 11144  0cc0 11145  1c1 11146   / cdiv 11908  cn 12250  2c2 12305  3c3 12306  9c9 12312  cz 12596  cuz 12860  +crp 13014  csqrt 15224  𝑐ccxp 26551   logb clogb 26761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9671  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222  ax-pre-sup 11223  ax-addf 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9393  df-fi 9441  df-sup 9472  df-inf 9473  df-oi 9540  df-card 9969  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-div 11909  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-q 12971  df-rp 13015  df-xneg 13132  df-xadd 13133  df-xmul 13134  df-ioo 13368  df-ioc 13369  df-ico 13370  df-icc 13371  df-fz 13525  df-fzo 13668  df-fl 13798  df-mod 13876  df-seq 14008  df-exp 14068  df-fac 14277  df-bc 14306  df-hash 14334  df-shft 15058  df-cj 15090  df-re 15091  df-im 15092  df-sqrt 15226  df-abs 15227  df-limsup 15459  df-clim 15476  df-rlim 15477  df-sum 15677  df-ef 16055  df-sin 16057  df-cos 16058  df-pi 16060  df-struct 17135  df-sets 17152  df-slot 17170  df-ndx 17182  df-base 17200  df-ress 17229  df-plusg 17265  df-mulr 17266  df-starv 17267  df-sca 17268  df-vsca 17269  df-ip 17270  df-tset 17271  df-ple 17272  df-ds 17274  df-unif 17275  df-hom 17276  df-cco 17277  df-rest 17423  df-topn 17424  df-0g 17442  df-gsum 17443  df-topgen 17444  df-pt 17445  df-prds 17448  df-xrs 17503  df-qtop 17508  df-imas 17509  df-xps 17511  df-mre 17585  df-mrc 17586  df-acs 17588  df-mgm 18619  df-sgrp 18698  df-mnd 18714  df-submnd 18760  df-mulg 19048  df-cntz 19297  df-cmn 19766  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-fbas 21310  df-fg 21311  df-cnfld 21314  df-top 22857  df-topon 22874  df-topsp 22896  df-bases 22910  df-cld 22984  df-ntr 22985  df-cls 22986  df-nei 23063  df-lp 23101  df-perf 23102  df-cn 23192  df-cnp 23193  df-haus 23280  df-tx 23527  df-hmeo 23720  df-fil 23811  df-fm 23903  df-flim 23904  df-flf 23905  df-xms 24287  df-ms 24288  df-tms 24289  df-cncf 24859  df-limc 25856  df-dv 25857  df-log 26552  df-cxp 26553  df-logb 26762
This theorem is referenced by:  2irrexpqALT  26797
  Copyright terms: Public domain W3C validator