Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sqrt2cxp2logb9e3 | Structured version Visualization version GIF version |
Description: The square root of two to the power of the logarithm of nine to base two is three. (√‘2) and (2 logb 9) are irrational numbers (see sqrt2irr0 15888 resp. 2logb9irr 25850), satisfying the statement in 2irrexpqALT 25855. (Contributed by AV, 29-Dec-2022.) |
Ref | Expression |
---|---|
sqrt2cxp2logb9e3 | ⊢ ((√‘2)↑𝑐(2 logb 9)) = 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 11978 | . . . . . 6 ⊢ 2 ∈ ℂ | |
2 | cxpsqrt 25763 | . . . . . 6 ⊢ (2 ∈ ℂ → (2↑𝑐(1 / 2)) = (√‘2)) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ (2↑𝑐(1 / 2)) = (√‘2) |
4 | 3 | eqcomi 2747 | . . . 4 ⊢ (√‘2) = (2↑𝑐(1 / 2)) |
5 | 4 | oveq1i 7265 | . . 3 ⊢ ((√‘2)↑𝑐(2 logb 9)) = ((2↑𝑐(1 / 2))↑𝑐(2 logb 9)) |
6 | 2rp 12664 | . . . 4 ⊢ 2 ∈ ℝ+ | |
7 | halfre 12117 | . . . 4 ⊢ (1 / 2) ∈ ℝ | |
8 | 2z 12282 | . . . . . 6 ⊢ 2 ∈ ℤ | |
9 | uzid 12526 | . . . . . 6 ⊢ (2 ∈ ℤ → 2 ∈ (ℤ≥‘2)) | |
10 | 8, 9 | ax-mp 5 | . . . . 5 ⊢ 2 ∈ (ℤ≥‘2) |
11 | 9nn 12001 | . . . . . 6 ⊢ 9 ∈ ℕ | |
12 | nnrp 12670 | . . . . . 6 ⊢ (9 ∈ ℕ → 9 ∈ ℝ+) | |
13 | 11, 12 | ax-mp 5 | . . . . 5 ⊢ 9 ∈ ℝ+ |
14 | relogbzcl 25829 | . . . . 5 ⊢ ((2 ∈ (ℤ≥‘2) ∧ 9 ∈ ℝ+) → (2 logb 9) ∈ ℝ) | |
15 | 10, 13, 14 | mp2an 688 | . . . 4 ⊢ (2 logb 9) ∈ ℝ |
16 | cxpcom 25797 | . . . 4 ⊢ ((2 ∈ ℝ+ ∧ (1 / 2) ∈ ℝ ∧ (2 logb 9) ∈ ℝ) → ((2↑𝑐(1 / 2))↑𝑐(2 logb 9)) = ((2↑𝑐(2 logb 9))↑𝑐(1 / 2))) | |
17 | 6, 7, 15, 16 | mp3an 1459 | . . 3 ⊢ ((2↑𝑐(1 / 2))↑𝑐(2 logb 9)) = ((2↑𝑐(2 logb 9))↑𝑐(1 / 2)) |
18 | 15 | recni 10920 | . . . . 5 ⊢ (2 logb 9) ∈ ℂ |
19 | cxpcl 25734 | . . . . 5 ⊢ ((2 ∈ ℂ ∧ (2 logb 9) ∈ ℂ) → (2↑𝑐(2 logb 9)) ∈ ℂ) | |
20 | 1, 18, 19 | mp2an 688 | . . . 4 ⊢ (2↑𝑐(2 logb 9)) ∈ ℂ |
21 | cxpsqrt 25763 | . . . 4 ⊢ ((2↑𝑐(2 logb 9)) ∈ ℂ → ((2↑𝑐(2 logb 9))↑𝑐(1 / 2)) = (√‘(2↑𝑐(2 logb 9)))) | |
22 | 20, 21 | ax-mp 5 | . . 3 ⊢ ((2↑𝑐(2 logb 9))↑𝑐(1 / 2)) = (√‘(2↑𝑐(2 logb 9))) |
23 | 5, 17, 22 | 3eqtri 2770 | . 2 ⊢ ((√‘2)↑𝑐(2 logb 9)) = (√‘(2↑𝑐(2 logb 9))) |
24 | 2ne0 12007 | . . . . 5 ⊢ 2 ≠ 0 | |
25 | 1ne2 12111 | . . . . . 6 ⊢ 1 ≠ 2 | |
26 | 25 | necomi 2997 | . . . . 5 ⊢ 2 ≠ 1 |
27 | eldifpr 4590 | . . . . 5 ⊢ (2 ∈ (ℂ ∖ {0, 1}) ↔ (2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1)) | |
28 | 1, 24, 26, 27 | mpbir3an 1339 | . . . 4 ⊢ 2 ∈ (ℂ ∖ {0, 1}) |
29 | 9cn 12003 | . . . . 5 ⊢ 9 ∈ ℂ | |
30 | 9re 12002 | . . . . . 6 ⊢ 9 ∈ ℝ | |
31 | 9pos 12016 | . . . . . 6 ⊢ 0 < 9 | |
32 | 30, 31 | gt0ne0ii 11441 | . . . . 5 ⊢ 9 ≠ 0 |
33 | eldifsn 4717 | . . . . 5 ⊢ (9 ∈ (ℂ ∖ {0}) ↔ (9 ∈ ℂ ∧ 9 ≠ 0)) | |
34 | 29, 32, 33 | mpbir2an 707 | . . . 4 ⊢ 9 ∈ (ℂ ∖ {0}) |
35 | cxplogb 25841 | . . . 4 ⊢ ((2 ∈ (ℂ ∖ {0, 1}) ∧ 9 ∈ (ℂ ∖ {0})) → (2↑𝑐(2 logb 9)) = 9) | |
36 | 28, 34, 35 | mp2an 688 | . . 3 ⊢ (2↑𝑐(2 logb 9)) = 9 |
37 | 36 | fveq2i 6759 | . 2 ⊢ (√‘(2↑𝑐(2 logb 9))) = (√‘9) |
38 | sqrt9 14913 | . 2 ⊢ (√‘9) = 3 | |
39 | 23, 37, 38 | 3eqtri 2770 | 1 ⊢ ((√‘2)↑𝑐(2 logb 9)) = 3 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∖ cdif 3880 {csn 4558 {cpr 4560 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ℝcr 10801 0cc0 10802 1c1 10803 / cdiv 11562 ℕcn 11903 2c2 11958 3c3 11959 9c9 11965 ℤcz 12249 ℤ≥cuz 12511 ℝ+crp 12659 √csqrt 14872 ↑𝑐ccxp 25616 logb clogb 25819 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ioc 13013 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-fac 13916 df-bc 13945 df-hash 13973 df-shft 14706 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-limsup 15108 df-clim 15125 df-rlim 15126 df-sum 15326 df-ef 15705 df-sin 15707 df-cos 15708 df-pi 15710 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-lp 22195 df-perf 22196 df-cn 22286 df-cnp 22287 df-haus 22374 df-tx 22621 df-hmeo 22814 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-xms 23381 df-ms 23382 df-tms 23383 df-cncf 23947 df-limc 24935 df-dv 24936 df-log 25617 df-cxp 25618 df-logb 25820 |
This theorem is referenced by: 2irrexpqALT 25855 |
Copyright terms: Public domain | W3C validator |