MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxplogb Structured version   Visualization version   GIF version

Theorem cxplogb 25841
Description: Identity law for the general logarithm. (Contributed by AV, 22-May-2020.)
Assertion
Ref Expression
cxplogb ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵𝑐(𝐵 logb 𝑋)) = 𝑋)

Proof of Theorem cxplogb
StepHypRef Expression
1 logbval 25821 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵)))
21oveq2d 7271 . 2 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵𝑐(𝐵 logb 𝑋)) = (𝐵𝑐((log‘𝑋) / (log‘𝐵))))
3 eldifi 4057 . . . 4 (𝐵 ∈ (ℂ ∖ {0, 1}) → 𝐵 ∈ ℂ)
43adantr 480 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → 𝐵 ∈ ℂ)
5 eldif 3893 . . . . 5 (𝐵 ∈ (ℂ ∖ {0, 1}) ↔ (𝐵 ∈ ℂ ∧ ¬ 𝐵 ∈ {0, 1}))
6 c0ex 10900 . . . . . . . . 9 0 ∈ V
76prid1 4695 . . . . . . . 8 0 ∈ {0, 1}
8 eleq1 2826 . . . . . . . 8 (𝐵 = 0 → (𝐵 ∈ {0, 1} ↔ 0 ∈ {0, 1}))
97, 8mpbiri 257 . . . . . . 7 (𝐵 = 0 → 𝐵 ∈ {0, 1})
109necon3bi 2969 . . . . . 6 𝐵 ∈ {0, 1} → 𝐵 ≠ 0)
1110adantl 481 . . . . 5 ((𝐵 ∈ ℂ ∧ ¬ 𝐵 ∈ {0, 1}) → 𝐵 ≠ 0)
125, 11sylbi 216 . . . 4 (𝐵 ∈ (ℂ ∖ {0, 1}) → 𝐵 ≠ 0)
1312adantr 480 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → 𝐵 ≠ 0)
14 eldif 3893 . . . . . . 7 (𝑋 ∈ (ℂ ∖ {0}) ↔ (𝑋 ∈ ℂ ∧ ¬ 𝑋 ∈ {0}))
156snid 4594 . . . . . . . . . 10 0 ∈ {0}
16 eleq1 2826 . . . . . . . . . 10 (𝑋 = 0 → (𝑋 ∈ {0} ↔ 0 ∈ {0}))
1715, 16mpbiri 257 . . . . . . . . 9 (𝑋 = 0 → 𝑋 ∈ {0})
1817necon3bi 2969 . . . . . . . 8 𝑋 ∈ {0} → 𝑋 ≠ 0)
1918anim2i 616 . . . . . . 7 ((𝑋 ∈ ℂ ∧ ¬ 𝑋 ∈ {0}) → (𝑋 ∈ ℂ ∧ 𝑋 ≠ 0))
2014, 19sylbi 216 . . . . . 6 (𝑋 ∈ (ℂ ∖ {0}) → (𝑋 ∈ ℂ ∧ 𝑋 ≠ 0))
21 logcl 25629 . . . . . 6 ((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) → (log‘𝑋) ∈ ℂ)
2220, 21syl 17 . . . . 5 (𝑋 ∈ (ℂ ∖ {0}) → (log‘𝑋) ∈ ℂ)
2322adantl 481 . . . 4 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (log‘𝑋) ∈ ℂ)
2410anim2i 616 . . . . . . 7 ((𝐵 ∈ ℂ ∧ ¬ 𝐵 ∈ {0, 1}) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
255, 24sylbi 216 . . . . . 6 (𝐵 ∈ (ℂ ∖ {0, 1}) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
26 logcl 25629 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (log‘𝐵) ∈ ℂ)
2725, 26syl 17 . . . . 5 (𝐵 ∈ (ℂ ∖ {0, 1}) → (log‘𝐵) ∈ ℂ)
2827adantr 480 . . . 4 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (log‘𝐵) ∈ ℂ)
29 eldifpr 4590 . . . . . . 7 (𝐵 ∈ (ℂ ∖ {0, 1}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1))
3029biimpi 215 . . . . . 6 (𝐵 ∈ (ℂ ∖ {0, 1}) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1))
3130adantr 480 . . . . 5 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1))
32 logccne0 25639 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (log‘𝐵) ≠ 0)
3331, 32syl 17 . . . 4 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (log‘𝐵) ≠ 0)
3423, 28, 33divcld 11681 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → ((log‘𝑋) / (log‘𝐵)) ∈ ℂ)
354, 13, 34cxpefd 25772 . 2 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵𝑐((log‘𝑋) / (log‘𝐵))) = (exp‘(((log‘𝑋) / (log‘𝐵)) · (log‘𝐵))))
36 eldifsn 4717 . . . . . . 7 (𝑋 ∈ (ℂ ∖ {0}) ↔ (𝑋 ∈ ℂ ∧ 𝑋 ≠ 0))
3736, 21sylbi 216 . . . . . 6 (𝑋 ∈ (ℂ ∖ {0}) → (log‘𝑋) ∈ ℂ)
3837adantl 481 . . . . 5 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (log‘𝑋) ∈ ℂ)
3929, 32sylbi 216 . . . . . 6 (𝐵 ∈ (ℂ ∖ {0, 1}) → (log‘𝐵) ≠ 0)
4039adantr 480 . . . . 5 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (log‘𝐵) ≠ 0)
4138, 28, 40divcan1d 11682 . . . 4 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (((log‘𝑋) / (log‘𝐵)) · (log‘𝐵)) = (log‘𝑋))
4241fveq2d 6760 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (exp‘(((log‘𝑋) / (log‘𝐵)) · (log‘𝐵))) = (exp‘(log‘𝑋)))
43 eflog 25637 . . . . 5 ((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) → (exp‘(log‘𝑋)) = 𝑋)
4436, 43sylbi 216 . . . 4 (𝑋 ∈ (ℂ ∖ {0}) → (exp‘(log‘𝑋)) = 𝑋)
4544adantl 481 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (exp‘(log‘𝑋)) = 𝑋)
4642, 45eqtrd 2778 . 2 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (exp‘(((log‘𝑋) / (log‘𝐵)) · (log‘𝐵))) = 𝑋)
472, 35, 463eqtrd 2782 1 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵𝑐(𝐵 logb 𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  cdif 3880  {csn 4558  {cpr 4560  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   · cmul 10807   / cdiv 11562  expce 15699  logclog 25615  𝑐ccxp 25616   logb clogb 25819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617  df-cxp 25618  df-logb 25820
This theorem is referenced by:  relogbcxpb  25842  logbgcd1irr  25849  sqrt2cxp2logb9e3  25854  aks4d1p1p4  40007  aks4d1p6  40017  fllogbd  45794  nnpw2blen  45814  dignn0ldlem  45836
  Copyright terms: Public domain W3C validator