![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cxplogb | Structured version Visualization version GIF version |
Description: Identity law for the general logarithm. (Contributed by AV, 22-May-2020.) |
Ref | Expression |
---|---|
cxplogb | ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵↑𝑐(𝐵 logb 𝑋)) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | logbval 26116 | . . 3 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵))) | |
2 | 1 | oveq2d 7373 | . 2 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵↑𝑐(𝐵 logb 𝑋)) = (𝐵↑𝑐((log‘𝑋) / (log‘𝐵)))) |
3 | eldifi 4086 | . . . 4 ⊢ (𝐵 ∈ (ℂ ∖ {0, 1}) → 𝐵 ∈ ℂ) | |
4 | 3 | adantr 481 | . . 3 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → 𝐵 ∈ ℂ) |
5 | eldif 3920 | . . . . 5 ⊢ (𝐵 ∈ (ℂ ∖ {0, 1}) ↔ (𝐵 ∈ ℂ ∧ ¬ 𝐵 ∈ {0, 1})) | |
6 | c0ex 11149 | . . . . . . . . 9 ⊢ 0 ∈ V | |
7 | 6 | prid1 4723 | . . . . . . . 8 ⊢ 0 ∈ {0, 1} |
8 | eleq1 2825 | . . . . . . . 8 ⊢ (𝐵 = 0 → (𝐵 ∈ {0, 1} ↔ 0 ∈ {0, 1})) | |
9 | 7, 8 | mpbiri 257 | . . . . . . 7 ⊢ (𝐵 = 0 → 𝐵 ∈ {0, 1}) |
10 | 9 | necon3bi 2970 | . . . . . 6 ⊢ (¬ 𝐵 ∈ {0, 1} → 𝐵 ≠ 0) |
11 | 10 | adantl 482 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ ¬ 𝐵 ∈ {0, 1}) → 𝐵 ≠ 0) |
12 | 5, 11 | sylbi 216 | . . . 4 ⊢ (𝐵 ∈ (ℂ ∖ {0, 1}) → 𝐵 ≠ 0) |
13 | 12 | adantr 481 | . . 3 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → 𝐵 ≠ 0) |
14 | eldif 3920 | . . . . . . 7 ⊢ (𝑋 ∈ (ℂ ∖ {0}) ↔ (𝑋 ∈ ℂ ∧ ¬ 𝑋 ∈ {0})) | |
15 | 6 | snid 4622 | . . . . . . . . . 10 ⊢ 0 ∈ {0} |
16 | eleq1 2825 | . . . . . . . . . 10 ⊢ (𝑋 = 0 → (𝑋 ∈ {0} ↔ 0 ∈ {0})) | |
17 | 15, 16 | mpbiri 257 | . . . . . . . . 9 ⊢ (𝑋 = 0 → 𝑋 ∈ {0}) |
18 | 17 | necon3bi 2970 | . . . . . . . 8 ⊢ (¬ 𝑋 ∈ {0} → 𝑋 ≠ 0) |
19 | 18 | anim2i 617 | . . . . . . 7 ⊢ ((𝑋 ∈ ℂ ∧ ¬ 𝑋 ∈ {0}) → (𝑋 ∈ ℂ ∧ 𝑋 ≠ 0)) |
20 | 14, 19 | sylbi 216 | . . . . . 6 ⊢ (𝑋 ∈ (ℂ ∖ {0}) → (𝑋 ∈ ℂ ∧ 𝑋 ≠ 0)) |
21 | logcl 25924 | . . . . . 6 ⊢ ((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) → (log‘𝑋) ∈ ℂ) | |
22 | 20, 21 | syl 17 | . . . . 5 ⊢ (𝑋 ∈ (ℂ ∖ {0}) → (log‘𝑋) ∈ ℂ) |
23 | 22 | adantl 482 | . . . 4 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (log‘𝑋) ∈ ℂ) |
24 | 10 | anim2i 617 | . . . . . . 7 ⊢ ((𝐵 ∈ ℂ ∧ ¬ 𝐵 ∈ {0, 1}) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) |
25 | 5, 24 | sylbi 216 | . . . . . 6 ⊢ (𝐵 ∈ (ℂ ∖ {0, 1}) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) |
26 | logcl 25924 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (log‘𝐵) ∈ ℂ) | |
27 | 25, 26 | syl 17 | . . . . 5 ⊢ (𝐵 ∈ (ℂ ∖ {0, 1}) → (log‘𝐵) ∈ ℂ) |
28 | 27 | adantr 481 | . . . 4 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (log‘𝐵) ∈ ℂ) |
29 | eldifpr 4618 | . . . . . . 7 ⊢ (𝐵 ∈ (ℂ ∖ {0, 1}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1)) | |
30 | 29 | biimpi 215 | . . . . . 6 ⊢ (𝐵 ∈ (ℂ ∖ {0, 1}) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1)) |
31 | 30 | adantr 481 | . . . . 5 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1)) |
32 | logccne0 25934 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (log‘𝐵) ≠ 0) | |
33 | 31, 32 | syl 17 | . . . 4 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (log‘𝐵) ≠ 0) |
34 | 23, 28, 33 | divcld 11931 | . . 3 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → ((log‘𝑋) / (log‘𝐵)) ∈ ℂ) |
35 | 4, 13, 34 | cxpefd 26067 | . 2 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵↑𝑐((log‘𝑋) / (log‘𝐵))) = (exp‘(((log‘𝑋) / (log‘𝐵)) · (log‘𝐵)))) |
36 | eldifsn 4747 | . . . . . . 7 ⊢ (𝑋 ∈ (ℂ ∖ {0}) ↔ (𝑋 ∈ ℂ ∧ 𝑋 ≠ 0)) | |
37 | 36, 21 | sylbi 216 | . . . . . 6 ⊢ (𝑋 ∈ (ℂ ∖ {0}) → (log‘𝑋) ∈ ℂ) |
38 | 37 | adantl 482 | . . . . 5 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (log‘𝑋) ∈ ℂ) |
39 | 29, 32 | sylbi 216 | . . . . . 6 ⊢ (𝐵 ∈ (ℂ ∖ {0, 1}) → (log‘𝐵) ≠ 0) |
40 | 39 | adantr 481 | . . . . 5 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (log‘𝐵) ≠ 0) |
41 | 38, 28, 40 | divcan1d 11932 | . . . 4 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (((log‘𝑋) / (log‘𝐵)) · (log‘𝐵)) = (log‘𝑋)) |
42 | 41 | fveq2d 6846 | . . 3 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (exp‘(((log‘𝑋) / (log‘𝐵)) · (log‘𝐵))) = (exp‘(log‘𝑋))) |
43 | eflog 25932 | . . . . 5 ⊢ ((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) → (exp‘(log‘𝑋)) = 𝑋) | |
44 | 36, 43 | sylbi 216 | . . . 4 ⊢ (𝑋 ∈ (ℂ ∖ {0}) → (exp‘(log‘𝑋)) = 𝑋) |
45 | 44 | adantl 482 | . . 3 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (exp‘(log‘𝑋)) = 𝑋) |
46 | 42, 45 | eqtrd 2776 | . 2 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (exp‘(((log‘𝑋) / (log‘𝐵)) · (log‘𝐵))) = 𝑋) |
47 | 2, 35, 46 | 3eqtrd 2780 | 1 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵↑𝑐(𝐵 logb 𝑋)) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2943 ∖ cdif 3907 {csn 4586 {cpr 4588 ‘cfv 6496 (class class class)co 7357 ℂcc 11049 0cc0 11051 1c1 11052 · cmul 11056 / cdiv 11812 expce 15944 logclog 25910 ↑𝑐ccxp 25911 logb clogb 26114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-inf2 9577 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 ax-addf 11130 ax-mulf 11131 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-2o 8413 df-er 8648 df-map 8767 df-pm 8768 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-fi 9347 df-sup 9378 df-inf 9379 df-oi 9446 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-q 12874 df-rp 12916 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-ioo 13268 df-ioc 13269 df-ico 13270 df-icc 13271 df-fz 13425 df-fzo 13568 df-fl 13697 df-mod 13775 df-seq 13907 df-exp 13968 df-fac 14174 df-bc 14203 df-hash 14231 df-shft 14952 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-limsup 15353 df-clim 15370 df-rlim 15371 df-sum 15571 df-ef 15950 df-sin 15952 df-cos 15953 df-pi 15955 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-starv 17148 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-unif 17156 df-hom 17157 df-cco 17158 df-rest 17304 df-topn 17305 df-0g 17323 df-gsum 17324 df-topgen 17325 df-pt 17326 df-prds 17329 df-xrs 17384 df-qtop 17389 df-imas 17390 df-xps 17392 df-mre 17466 df-mrc 17467 df-acs 17469 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-submnd 18602 df-mulg 18873 df-cntz 19097 df-cmn 19564 df-psmet 20788 df-xmet 20789 df-met 20790 df-bl 20791 df-mopn 20792 df-fbas 20793 df-fg 20794 df-cnfld 20797 df-top 22243 df-topon 22260 df-topsp 22282 df-bases 22296 df-cld 22370 df-ntr 22371 df-cls 22372 df-nei 22449 df-lp 22487 df-perf 22488 df-cn 22578 df-cnp 22579 df-haus 22666 df-tx 22913 df-hmeo 23106 df-fil 23197 df-fm 23289 df-flim 23290 df-flf 23291 df-xms 23673 df-ms 23674 df-tms 23675 df-cncf 24241 df-limc 25230 df-dv 25231 df-log 25912 df-cxp 25913 df-logb 26115 |
This theorem is referenced by: relogbcxpb 26137 logbgcd1irr 26144 sqrt2cxp2logb9e3 26149 aks4d1p1p4 40528 aks4d1p6 40538 fllogbd 46636 nnpw2blen 46656 dignn0ldlem 46678 |
Copyright terms: Public domain | W3C validator |