MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxplogb Structured version   Visualization version   GIF version

Theorem cxplogb 26712
Description: Identity law for the general logarithm. (Contributed by AV, 22-May-2020.)
Assertion
Ref Expression
cxplogb ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵𝑐(𝐵 logb 𝑋)) = 𝑋)

Proof of Theorem cxplogb
StepHypRef Expression
1 logbval 26692 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵)))
21oveq2d 7369 . 2 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵𝑐(𝐵 logb 𝑋)) = (𝐵𝑐((log‘𝑋) / (log‘𝐵))))
3 eldifi 4084 . . . 4 (𝐵 ∈ (ℂ ∖ {0, 1}) → 𝐵 ∈ ℂ)
43adantr 480 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → 𝐵 ∈ ℂ)
5 eldif 3915 . . . . 5 (𝐵 ∈ (ℂ ∖ {0, 1}) ↔ (𝐵 ∈ ℂ ∧ ¬ 𝐵 ∈ {0, 1}))
6 c0ex 11128 . . . . . . . . 9 0 ∈ V
76prid1 4716 . . . . . . . 8 0 ∈ {0, 1}
8 eleq1 2816 . . . . . . . 8 (𝐵 = 0 → (𝐵 ∈ {0, 1} ↔ 0 ∈ {0, 1}))
97, 8mpbiri 258 . . . . . . 7 (𝐵 = 0 → 𝐵 ∈ {0, 1})
109necon3bi 2951 . . . . . 6 𝐵 ∈ {0, 1} → 𝐵 ≠ 0)
1110adantl 481 . . . . 5 ((𝐵 ∈ ℂ ∧ ¬ 𝐵 ∈ {0, 1}) → 𝐵 ≠ 0)
125, 11sylbi 217 . . . 4 (𝐵 ∈ (ℂ ∖ {0, 1}) → 𝐵 ≠ 0)
1312adantr 480 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → 𝐵 ≠ 0)
14 eldif 3915 . . . . . . 7 (𝑋 ∈ (ℂ ∖ {0}) ↔ (𝑋 ∈ ℂ ∧ ¬ 𝑋 ∈ {0}))
156snid 4616 . . . . . . . . . 10 0 ∈ {0}
16 eleq1 2816 . . . . . . . . . 10 (𝑋 = 0 → (𝑋 ∈ {0} ↔ 0 ∈ {0}))
1715, 16mpbiri 258 . . . . . . . . 9 (𝑋 = 0 → 𝑋 ∈ {0})
1817necon3bi 2951 . . . . . . . 8 𝑋 ∈ {0} → 𝑋 ≠ 0)
1918anim2i 617 . . . . . . 7 ((𝑋 ∈ ℂ ∧ ¬ 𝑋 ∈ {0}) → (𝑋 ∈ ℂ ∧ 𝑋 ≠ 0))
2014, 19sylbi 217 . . . . . 6 (𝑋 ∈ (ℂ ∖ {0}) → (𝑋 ∈ ℂ ∧ 𝑋 ≠ 0))
21 logcl 26493 . . . . . 6 ((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) → (log‘𝑋) ∈ ℂ)
2220, 21syl 17 . . . . 5 (𝑋 ∈ (ℂ ∖ {0}) → (log‘𝑋) ∈ ℂ)
2322adantl 481 . . . 4 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (log‘𝑋) ∈ ℂ)
2410anim2i 617 . . . . . . 7 ((𝐵 ∈ ℂ ∧ ¬ 𝐵 ∈ {0, 1}) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
255, 24sylbi 217 . . . . . 6 (𝐵 ∈ (ℂ ∖ {0, 1}) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
26 logcl 26493 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (log‘𝐵) ∈ ℂ)
2725, 26syl 17 . . . . 5 (𝐵 ∈ (ℂ ∖ {0, 1}) → (log‘𝐵) ∈ ℂ)
2827adantr 480 . . . 4 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (log‘𝐵) ∈ ℂ)
29 eldifpr 4612 . . . . . . 7 (𝐵 ∈ (ℂ ∖ {0, 1}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1))
3029biimpi 216 . . . . . 6 (𝐵 ∈ (ℂ ∖ {0, 1}) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1))
3130adantr 480 . . . . 5 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1))
32 logccne0 26503 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (log‘𝐵) ≠ 0)
3331, 32syl 17 . . . 4 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (log‘𝐵) ≠ 0)
3423, 28, 33divcld 11918 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → ((log‘𝑋) / (log‘𝐵)) ∈ ℂ)
354, 13, 34cxpefd 26637 . 2 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵𝑐((log‘𝑋) / (log‘𝐵))) = (exp‘(((log‘𝑋) / (log‘𝐵)) · (log‘𝐵))))
36 eldifsn 4740 . . . . . . 7 (𝑋 ∈ (ℂ ∖ {0}) ↔ (𝑋 ∈ ℂ ∧ 𝑋 ≠ 0))
3736, 21sylbi 217 . . . . . 6 (𝑋 ∈ (ℂ ∖ {0}) → (log‘𝑋) ∈ ℂ)
3837adantl 481 . . . . 5 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (log‘𝑋) ∈ ℂ)
3929, 32sylbi 217 . . . . . 6 (𝐵 ∈ (ℂ ∖ {0, 1}) → (log‘𝐵) ≠ 0)
4039adantr 480 . . . . 5 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (log‘𝐵) ≠ 0)
4138, 28, 40divcan1d 11919 . . . 4 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (((log‘𝑋) / (log‘𝐵)) · (log‘𝐵)) = (log‘𝑋))
4241fveq2d 6830 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (exp‘(((log‘𝑋) / (log‘𝐵)) · (log‘𝐵))) = (exp‘(log‘𝑋)))
43 eflog 26501 . . . . 5 ((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) → (exp‘(log‘𝑋)) = 𝑋)
4436, 43sylbi 217 . . . 4 (𝑋 ∈ (ℂ ∖ {0}) → (exp‘(log‘𝑋)) = 𝑋)
4544adantl 481 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (exp‘(log‘𝑋)) = 𝑋)
4642, 45eqtrd 2764 . 2 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (exp‘(((log‘𝑋) / (log‘𝐵)) · (log‘𝐵))) = 𝑋)
472, 35, 463eqtrd 2768 1 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵𝑐(𝐵 logb 𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cdif 3902  {csn 4579  {cpr 4581  cfv 6486  (class class class)co 7353  cc 11026  0cc0 11028  1c1 11029   · cmul 11033   / cdiv 11795  expce 15986  logclog 26479  𝑐ccxp 26480   logb clogb 26690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-ef 15992  df-sin 15994  df-cos 15995  df-pi 15997  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-limc 25783  df-dv 25784  df-log 26481  df-cxp 26482  df-logb 26691
This theorem is referenced by:  relogbcxpb  26713  logbgcd1irr  26720  sqrt2cxp2logb9e3  26725  aks4d1p1p4  42044  aks4d1p6  42054  aks6d1c7lem1  42153  fllogbd  48546  nnpw2blen  48566  dignn0ldlem  48588
  Copyright terms: Public domain W3C validator