Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relogbval | Structured version Visualization version GIF version |
Description: Value of the general logarithm with integer base. (Contributed by Thierry Arnoux, 27-Sep-2017.) |
Ref | Expression |
---|---|
relogbval | ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zgt1rpn0n1 12876 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘2) → (𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1)) | |
2 | 1 | adantr 482 | . . . . 5 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+) → (𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1)) |
3 | 2 | simp1d 1142 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+) → 𝐵 ∈ ℝ+) |
4 | 3 | rpcnd 12879 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+) → 𝐵 ∈ ℂ) |
5 | 2 | simp2d 1143 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+) → 𝐵 ≠ 0) |
6 | 2 | simp3d 1144 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+) → 𝐵 ≠ 1) |
7 | eldifpr 4609 | . . 3 ⊢ (𝐵 ∈ (ℂ ∖ {0, 1}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1)) | |
8 | 4, 5, 6, 7 | syl3anbrc 1343 | . 2 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+) → 𝐵 ∈ (ℂ ∖ {0, 1})) |
9 | simpr 486 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+) → 𝑋 ∈ ℝ+) | |
10 | 9 | rpcnne0d 12886 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+) → (𝑋 ∈ ℂ ∧ 𝑋 ≠ 0)) |
11 | eldifsn 4738 | . . 3 ⊢ (𝑋 ∈ (ℂ ∖ {0}) ↔ (𝑋 ∈ ℂ ∧ 𝑋 ≠ 0)) | |
12 | 10, 11 | sylibr 233 | . 2 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+) → 𝑋 ∈ (ℂ ∖ {0})) |
13 | logbval 26021 | . 2 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵))) | |
14 | 8, 12, 13 | syl2anc 585 | 1 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2941 ∖ cdif 3898 {csn 4577 {cpr 4579 ‘cfv 6483 (class class class)co 7341 ℂcc 10974 0cc0 10976 1c1 10977 / cdiv 11737 2c2 12133 ℤ≥cuz 12687 ℝ+crp 12835 logclog 25815 logb clogb 26019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7785 df-2nd 7904 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-er 8573 df-en 8809 df-dom 8810 df-sdom 8811 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-nn 12079 df-2 12141 df-n0 12339 df-z 12425 df-uz 12688 df-rp 12836 df-logb 26020 |
This theorem is referenced by: logbrec 26037 logbleb 26038 logblt 26039 aks4d1p1p7 40387 aks4d1p6 40394 logbge0b 46327 logblt1b 46328 |
Copyright terms: Public domain | W3C validator |