Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relogbmulbexp Structured version   Visualization version   GIF version

Theorem relogbmulbexp 45837
Description: The logarithm of the product of a positive real number and the base to the power of a real number is the logarithm of the positive real number plus the real number. (Contributed by AV, 29-May-2020.)
Assertion
Ref Expression
relogbmulbexp ((𝐵 ∈ (ℝ+ ∖ {1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ)) → (𝐵 logb (𝐴 · (𝐵𝑐𝐶))) = ((𝐵 logb 𝐴) + 𝐶))

Proof of Theorem relogbmulbexp
StepHypRef Expression
1 rpcn 12685 . . . . . . 7 (𝐵 ∈ ℝ+𝐵 ∈ ℂ)
21adantr 480 . . . . . 6 ((𝐵 ∈ ℝ+𝐵 ≠ 1) → 𝐵 ∈ ℂ)
3 rpne0 12691 . . . . . . 7 (𝐵 ∈ ℝ+𝐵 ≠ 0)
43adantr 480 . . . . . 6 ((𝐵 ∈ ℝ+𝐵 ≠ 1) → 𝐵 ≠ 0)
5 simpr 484 . . . . . 6 ((𝐵 ∈ ℝ+𝐵 ≠ 1) → 𝐵 ≠ 1)
62, 4, 53jca 1126 . . . . 5 ((𝐵 ∈ ℝ+𝐵 ≠ 1) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1))
7 eldifsn 4722 . . . . 5 (𝐵 ∈ (ℝ+ ∖ {1}) ↔ (𝐵 ∈ ℝ+𝐵 ≠ 1))
8 eldifpr 4595 . . . . 5 (𝐵 ∈ (ℂ ∖ {0, 1}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1))
96, 7, 83imtr4i 291 . . . 4 (𝐵 ∈ (ℝ+ ∖ {1}) → 𝐵 ∈ (ℂ ∖ {0, 1}))
109adantr 480 . . 3 ((𝐵 ∈ (ℝ+ ∖ {1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ)) → 𝐵 ∈ (ℂ ∖ {0, 1}))
11 simprl 767 . . 3 ((𝐵 ∈ (ℝ+ ∖ {1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ)) → 𝐴 ∈ ℝ+)
12 eldifi 4062 . . . 4 (𝐵 ∈ (ℝ+ ∖ {1}) → 𝐵 ∈ ℝ+)
1312adantr 480 . . 3 ((𝐵 ∈ (ℝ+ ∖ {1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ)) → 𝐵 ∈ ℝ+)
14 simpr 484 . . . 4 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ) → 𝐶 ∈ ℝ)
1514adantl 481 . . 3 ((𝐵 ∈ (ℝ+ ∖ {1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ)) → 𝐶 ∈ ℝ)
16 relogbmulexp 25871 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ)) → (𝐵 logb (𝐴 · (𝐵𝑐𝐶))) = ((𝐵 logb 𝐴) + (𝐶 · (𝐵 logb 𝐵))))
1710, 11, 13, 15, 16syl13anc 1370 . 2 ((𝐵 ∈ (ℝ+ ∖ {1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ)) → (𝐵 logb (𝐴 · (𝐵𝑐𝐶))) = ((𝐵 logb 𝐴) + (𝐶 · (𝐵 logb 𝐵))))
187, 6sylbi 216 . . . . . . 7 (𝐵 ∈ (ℝ+ ∖ {1}) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1))
19 logbid1 25861 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (𝐵 logb 𝐵) = 1)
2018, 19syl 17 . . . . . 6 (𝐵 ∈ (ℝ+ ∖ {1}) → (𝐵 logb 𝐵) = 1)
2120adantr 480 . . . . 5 ((𝐵 ∈ (ℝ+ ∖ {1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ)) → (𝐵 logb 𝐵) = 1)
2221oveq2d 7276 . . . 4 ((𝐵 ∈ (ℝ+ ∖ {1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ)) → (𝐶 · (𝐵 logb 𝐵)) = (𝐶 · 1))
23 ax-1rid 10888 . . . . . 6 (𝐶 ∈ ℝ → (𝐶 · 1) = 𝐶)
2423adantl 481 . . . . 5 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ) → (𝐶 · 1) = 𝐶)
2524adantl 481 . . . 4 ((𝐵 ∈ (ℝ+ ∖ {1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ)) → (𝐶 · 1) = 𝐶)
2622, 25eqtrd 2777 . . 3 ((𝐵 ∈ (ℝ+ ∖ {1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ)) → (𝐶 · (𝐵 logb 𝐵)) = 𝐶)
2726oveq2d 7276 . 2 ((𝐵 ∈ (ℝ+ ∖ {1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ)) → ((𝐵 logb 𝐴) + (𝐶 · (𝐵 logb 𝐵))) = ((𝐵 logb 𝐴) + 𝐶))
2817, 27eqtrd 2777 1 ((𝐵 ∈ (ℝ+ ∖ {1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ)) → (𝐵 logb (𝐴 · (𝐵𝑐𝐶))) = ((𝐵 logb 𝐴) + 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2107  wne 2941  cdif 3885  {csn 4563  {cpr 4565  (class class class)co 7260  cc 10816  cr 10817  0cc0 10818  1c1 10819   + caddc 10821   · cmul 10823  +crp 12675  𝑐ccxp 25654   logb clogb 25857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5210  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7571  ax-inf2 9345  ax-cnex 10874  ax-resscn 10875  ax-1cn 10876  ax-icn 10877  ax-addcl 10878  ax-addrcl 10879  ax-mulcl 10880  ax-mulrcl 10881  ax-mulcom 10882  ax-addass 10883  ax-mulass 10884  ax-distr 10885  ax-i2m1 10886  ax-1ne0 10887  ax-1rid 10888  ax-rnegex 10889  ax-rrecex 10890  ax-cnre 10891  ax-pre-lttri 10892  ax-pre-lttrn 10893  ax-pre-ltadd 10894  ax-pre-mulgt0 10895  ax-pre-sup 10896  ax-addf 10897  ax-mulf 10898
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3429  df-sbc 3717  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4842  df-int 4882  df-iun 4928  df-iin 4929  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5485  df-eprel 5491  df-po 5499  df-so 5500  df-fr 5540  df-se 5541  df-we 5542  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-pred 6196  df-ord 6259  df-on 6260  df-lim 6261  df-suc 6262  df-iota 6381  df-fun 6425  df-fn 6426  df-f 6427  df-f1 6428  df-fo 6429  df-f1o 6430  df-fv 6431  df-isom 6432  df-riota 7217  df-ov 7263  df-oprab 7264  df-mpo 7265  df-of 7516  df-om 7693  df-1st 7809  df-2nd 7810  df-supp 7954  df-frecs 8073  df-wrecs 8104  df-recs 8178  df-rdg 8217  df-1o 8272  df-2o 8273  df-er 8461  df-map 8580  df-pm 8581  df-ixp 8649  df-en 8697  df-dom 8698  df-sdom 8699  df-fin 8700  df-fsupp 9075  df-fi 9116  df-sup 9147  df-inf 9148  df-oi 9215  df-card 9644  df-pnf 10958  df-mnf 10959  df-xr 10960  df-ltxr 10961  df-le 10962  df-sub 11153  df-neg 11154  df-div 11579  df-nn 11920  df-2 11982  df-3 11983  df-4 11984  df-5 11985  df-6 11986  df-7 11987  df-8 11988  df-9 11989  df-n0 12180  df-z 12266  df-dec 12383  df-uz 12528  df-q 12634  df-rp 12676  df-xneg 12793  df-xadd 12794  df-xmul 12795  df-ioo 13028  df-ioc 13029  df-ico 13030  df-icc 13031  df-fz 13185  df-fzo 13328  df-fl 13456  df-mod 13534  df-seq 13666  df-exp 13727  df-fac 13932  df-bc 13961  df-hash 13989  df-shft 14722  df-cj 14754  df-re 14755  df-im 14756  df-sqrt 14890  df-abs 14891  df-limsup 15124  df-clim 15141  df-rlim 15142  df-sum 15342  df-ef 15721  df-sin 15723  df-cos 15724  df-pi 15726  df-struct 16792  df-sets 16809  df-slot 16827  df-ndx 16839  df-base 16857  df-ress 16886  df-plusg 16919  df-mulr 16920  df-starv 16921  df-sca 16922  df-vsca 16923  df-ip 16924  df-tset 16925  df-ple 16926  df-ds 16928  df-unif 16929  df-hom 16930  df-cco 16931  df-rest 17077  df-topn 17078  df-0g 17096  df-gsum 17097  df-topgen 17098  df-pt 17099  df-prds 17102  df-xrs 17157  df-qtop 17162  df-imas 17163  df-xps 17165  df-mre 17239  df-mrc 17240  df-acs 17242  df-mgm 18270  df-sgrp 18319  df-mnd 18330  df-submnd 18375  df-mulg 18645  df-cntz 18867  df-cmn 19332  df-psmet 20533  df-xmet 20534  df-met 20535  df-bl 20536  df-mopn 20537  df-fbas 20538  df-fg 20539  df-cnfld 20542  df-top 21987  df-topon 22004  df-topsp 22026  df-bases 22040  df-cld 22114  df-ntr 22115  df-cls 22116  df-nei 22193  df-lp 22231  df-perf 22232  df-cn 22322  df-cnp 22323  df-haus 22410  df-tx 22657  df-hmeo 22850  df-fil 22941  df-fm 23033  df-flim 23034  df-flf 23035  df-xms 23417  df-ms 23418  df-tms 23419  df-cncf 23985  df-limc 24973  df-dv 24974  df-log 25655  df-cxp 25656  df-logb 25858
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator