Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnlogbexp | Structured version Visualization version GIF version |
Description: Identity law for general logarithm with integer base. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by Thierry Arnoux, 27-Sep-2017.) |
Ref | Expression |
---|---|
nnlogbexp | ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) → (𝐵 logb (𝐵↑𝑀)) = 𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zgt1rpn0n1 12881 | . . . . . . . 8 ⊢ (𝐵 ∈ (ℤ≥‘2) → (𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1)) | |
2 | 1 | adantr 482 | . . . . . . 7 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) → (𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1)) |
3 | 2 | simp1d 1142 | . . . . . 6 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) → 𝐵 ∈ ℝ+) |
4 | 3 | rpcnd 12884 | . . . . 5 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) → 𝐵 ∈ ℂ) |
5 | 4 | adantr 482 | . . . 4 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 = 0) → 𝐵 ∈ ℂ) |
6 | 2 | simp2d 1143 | . . . . 5 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) → 𝐵 ≠ 0) |
7 | 6 | adantr 482 | . . . 4 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 = 0) → 𝐵 ≠ 0) |
8 | 2 | simp3d 1144 | . . . . 5 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) → 𝐵 ≠ 1) |
9 | 8 | adantr 482 | . . . 4 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 = 0) → 𝐵 ≠ 1) |
10 | logb1 26029 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (𝐵 logb 1) = 0) | |
11 | 5, 7, 9, 10 | syl3anc 1371 | . . 3 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 = 0) → (𝐵 logb 1) = 0) |
12 | simpr 486 | . . . . . 6 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 = 0) → 𝑀 = 0) | |
13 | 12 | oveq2d 7362 | . . . . 5 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 = 0) → (𝐵↑𝑀) = (𝐵↑0)) |
14 | 5 | exp0d 13968 | . . . . 5 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 = 0) → (𝐵↑0) = 1) |
15 | 13, 14 | eqtrd 2777 | . . . 4 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 = 0) → (𝐵↑𝑀) = 1) |
16 | 15 | oveq2d 7362 | . . 3 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 = 0) → (𝐵 logb (𝐵↑𝑀)) = (𝐵 logb 1)) |
17 | 11, 16, 12 | 3eqtr4d 2787 | . 2 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 = 0) → (𝐵 logb (𝐵↑𝑀)) = 𝑀) |
18 | 4 | adantr 482 | . . . . 5 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝐵 ∈ ℂ) |
19 | 6 | adantr 482 | . . . . 5 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝐵 ≠ 0) |
20 | 8 | adantr 482 | . . . . 5 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝐵 ≠ 1) |
21 | eldifpr 4613 | . . . . 5 ⊢ (𝐵 ∈ (ℂ ∖ {0, 1}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1)) | |
22 | 18, 19, 20, 21 | syl3anbrc 1343 | . . . 4 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝐵 ∈ (ℂ ∖ {0, 1})) |
23 | 3 | adantr 482 | . . . . . . 7 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝐵 ∈ ℝ+) |
24 | simpr 486 | . . . . . . . 8 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ) | |
25 | 24 | adantr 482 | . . . . . . 7 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℤ) |
26 | 23, 25 | rpexpcld 14072 | . . . . . 6 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝐵↑𝑀) ∈ ℝ+) |
27 | 26 | rpcnne0d 12891 | . . . . 5 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝐵↑𝑀) ∈ ℂ ∧ (𝐵↑𝑀) ≠ 0)) |
28 | eldifsn 4742 | . . . . 5 ⊢ ((𝐵↑𝑀) ∈ (ℂ ∖ {0}) ↔ ((𝐵↑𝑀) ∈ ℂ ∧ (𝐵↑𝑀) ≠ 0)) | |
29 | 27, 28 | sylibr 233 | . . . 4 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝐵↑𝑀) ∈ (ℂ ∖ {0})) |
30 | logbval 26026 | . . . 4 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐵↑𝑀) ∈ (ℂ ∖ {0})) → (𝐵 logb (𝐵↑𝑀)) = ((log‘(𝐵↑𝑀)) / (log‘𝐵))) | |
31 | 22, 29, 30 | syl2anc 585 | . . 3 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝐵 logb (𝐵↑𝑀)) = ((log‘(𝐵↑𝑀)) / (log‘𝐵))) |
32 | 24 | zred 12536 | . . . . . . 7 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℝ) |
33 | 32 | adantr 482 | . . . . . 6 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℝ) |
34 | 23, 33 | logcxpd 25998 | . . . . 5 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≠ 0) → (log‘(𝐵↑𝑐𝑀)) = (𝑀 · (log‘𝐵))) |
35 | 18, 19, 25 | cxpexpzd 25976 | . . . . . 6 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝐵↑𝑐𝑀) = (𝐵↑𝑀)) |
36 | 35 | fveq2d 6838 | . . . . 5 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≠ 0) → (log‘(𝐵↑𝑐𝑀)) = (log‘(𝐵↑𝑀))) |
37 | 34, 36 | eqtr3d 2779 | . . . 4 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑀 · (log‘𝐵)) = (log‘(𝐵↑𝑀))) |
38 | 37 | oveq1d 7361 | . . 3 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝑀 · (log‘𝐵)) / (log‘𝐵)) = ((log‘(𝐵↑𝑀)) / (log‘𝐵))) |
39 | 33 | recnd 11113 | . . . 4 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℂ) |
40 | 18, 19 | logcld 25836 | . . . 4 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≠ 0) → (log‘𝐵) ∈ ℂ) |
41 | logne0 25845 | . . . . 5 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1) → (log‘𝐵) ≠ 0) | |
42 | 23, 20, 41 | syl2anc 585 | . . . 4 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≠ 0) → (log‘𝐵) ≠ 0) |
43 | 39, 40, 42 | divcan4d 11867 | . . 3 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝑀 · (log‘𝐵)) / (log‘𝐵)) = 𝑀) |
44 | 31, 38, 43 | 3eqtr2d 2783 | . 2 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝐵 logb (𝐵↑𝑀)) = 𝑀) |
45 | 17, 44 | pm2.61dane 3030 | 1 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) → (𝐵 logb (𝐵↑𝑀)) = 𝑀) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2941 ∖ cdif 3902 {csn 4581 {cpr 4583 ‘cfv 6488 (class class class)co 7346 ℂcc 10979 ℝcr 10980 0cc0 10981 1c1 10982 · cmul 10986 / cdiv 11742 2c2 12138 ℤcz 12429 ℤ≥cuz 12692 ℝ+crp 12840 ↑cexp 13892 logclog 25820 ↑𝑐ccxp 25821 logb clogb 26024 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5237 ax-sep 5251 ax-nul 5258 ax-pow 5315 ax-pr 5379 ax-un 7659 ax-inf2 9507 ax-cnex 11037 ax-resscn 11038 ax-1cn 11039 ax-icn 11040 ax-addcl 11041 ax-addrcl 11042 ax-mulcl 11043 ax-mulrcl 11044 ax-mulcom 11045 ax-addass 11046 ax-mulass 11047 ax-distr 11048 ax-i2m1 11049 ax-1ne0 11050 ax-1rid 11051 ax-rnegex 11052 ax-rrecex 11053 ax-cnre 11054 ax-pre-lttri 11055 ax-pre-lttrn 11056 ax-pre-ltadd 11057 ax-pre-mulgt0 11058 ax-pre-sup 11059 ax-addf 11060 ax-mulf 11061 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3924 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-tp 4586 df-op 4588 df-uni 4861 df-int 4903 df-iun 4951 df-iin 4952 df-br 5101 df-opab 5163 df-mpt 5184 df-tr 5218 df-id 5525 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5582 df-se 5583 df-we 5584 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-pred 6246 df-ord 6313 df-on 6314 df-lim 6315 df-suc 6316 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7302 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7604 df-om 7790 df-1st 7908 df-2nd 7909 df-supp 8057 df-frecs 8176 df-wrecs 8207 df-recs 8281 df-rdg 8320 df-1o 8376 df-2o 8377 df-er 8578 df-map 8697 df-pm 8698 df-ixp 8766 df-en 8814 df-dom 8815 df-sdom 8816 df-fin 8817 df-fsupp 9236 df-fi 9277 df-sup 9308 df-inf 9309 df-oi 9376 df-card 9805 df-pnf 11121 df-mnf 11122 df-xr 11123 df-ltxr 11124 df-le 11125 df-sub 11317 df-neg 11318 df-div 11743 df-nn 12084 df-2 12146 df-3 12147 df-4 12148 df-5 12149 df-6 12150 df-7 12151 df-8 12152 df-9 12153 df-n0 12344 df-z 12430 df-dec 12548 df-uz 12693 df-q 12799 df-rp 12841 df-xneg 12958 df-xadd 12959 df-xmul 12960 df-ioo 13193 df-ioc 13194 df-ico 13195 df-icc 13196 df-fz 13350 df-fzo 13493 df-fl 13622 df-mod 13700 df-seq 13832 df-exp 13893 df-fac 14098 df-bc 14127 df-hash 14155 df-shft 14882 df-cj 14914 df-re 14915 df-im 14916 df-sqrt 15050 df-abs 15051 df-limsup 15284 df-clim 15301 df-rlim 15302 df-sum 15502 df-ef 15881 df-sin 15883 df-cos 15884 df-pi 15886 df-struct 16950 df-sets 16967 df-slot 16985 df-ndx 16997 df-base 17015 df-ress 17044 df-plusg 17077 df-mulr 17078 df-starv 17079 df-sca 17080 df-vsca 17081 df-ip 17082 df-tset 17083 df-ple 17084 df-ds 17086 df-unif 17087 df-hom 17088 df-cco 17089 df-rest 17235 df-topn 17236 df-0g 17254 df-gsum 17255 df-topgen 17256 df-pt 17257 df-prds 17260 df-xrs 17315 df-qtop 17320 df-imas 17321 df-xps 17323 df-mre 17397 df-mrc 17398 df-acs 17400 df-mgm 18428 df-sgrp 18477 df-mnd 18488 df-submnd 18533 df-mulg 18802 df-cntz 19024 df-cmn 19488 df-psmet 20699 df-xmet 20700 df-met 20701 df-bl 20702 df-mopn 20703 df-fbas 20704 df-fg 20705 df-cnfld 20708 df-top 22153 df-topon 22170 df-topsp 22192 df-bases 22206 df-cld 22280 df-ntr 22281 df-cls 22282 df-nei 22359 df-lp 22397 df-perf 22398 df-cn 22488 df-cnp 22489 df-haus 22576 df-tx 22823 df-hmeo 23016 df-fil 23107 df-fm 23199 df-flim 23200 df-flf 23201 df-xms 23583 df-ms 23584 df-tms 23585 df-cncf 24151 df-limc 25140 df-dv 25141 df-log 25822 df-cxp 25823 df-logb 26025 |
This theorem is referenced by: dya2ub 32601 logbpw2m1 46331 fllog2 46332 blenpw2 46342 |
Copyright terms: Public domain | W3C validator |