MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relogbreexp Structured version   Visualization version   GIF version

Theorem relogbreexp 26702
Description: Power law for the general logarithm for real powers: The logarithm of a positive real number to the power of a real number is equal to the product of the exponent and the logarithm of the base of the power. Property 4 of [Cohen4] p. 361. (Contributed by AV, 9-Jun-2020.)
Assertion
Ref Expression
relogbreexp ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → (𝐵 logb (𝐶𝑐𝐸)) = (𝐸 · (𝐵 logb 𝐶)))

Proof of Theorem relogbreexp
StepHypRef Expression
1 logcxp 26595 . . . . 5 ((𝐶 ∈ ℝ+𝐸 ∈ ℝ) → (log‘(𝐶𝑐𝐸)) = (𝐸 · (log‘𝐶)))
213adant1 1130 . . . 4 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → (log‘(𝐶𝑐𝐸)) = (𝐸 · (log‘𝐶)))
32oveq1d 7368 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → ((log‘(𝐶𝑐𝐸)) / (log‘𝐵)) = ((𝐸 · (log‘𝐶)) / (log‘𝐵)))
4 recn 11118 . . . . 5 (𝐸 ∈ ℝ → 𝐸 ∈ ℂ)
543ad2ant3 1135 . . . 4 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → 𝐸 ∈ ℂ)
6 rpcn 12923 . . . . . 6 (𝐶 ∈ ℝ+𝐶 ∈ ℂ)
7 rpne0 12929 . . . . . 6 (𝐶 ∈ ℝ+𝐶 ≠ 0)
86, 7logcld 26496 . . . . 5 (𝐶 ∈ ℝ+ → (log‘𝐶) ∈ ℂ)
983ad2ant2 1134 . . . 4 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → (log‘𝐶) ∈ ℂ)
10 eldifi 4084 . . . . . . 7 (𝐵 ∈ (ℂ ∖ {0, 1}) → 𝐵 ∈ ℂ)
11 eldifpr 4612 . . . . . . . 8 (𝐵 ∈ (ℂ ∖ {0, 1}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1))
1211simp2bi 1146 . . . . . . 7 (𝐵 ∈ (ℂ ∖ {0, 1}) → 𝐵 ≠ 0)
1310, 12logcld 26496 . . . . . 6 (𝐵 ∈ (ℂ ∖ {0, 1}) → (log‘𝐵) ∈ ℂ)
14 logccne0 26504 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (log‘𝐵) ≠ 0)
1511, 14sylbi 217 . . . . . 6 (𝐵 ∈ (ℂ ∖ {0, 1}) → (log‘𝐵) ≠ 0)
1613, 15jca 511 . . . . 5 (𝐵 ∈ (ℂ ∖ {0, 1}) → ((log‘𝐵) ∈ ℂ ∧ (log‘𝐵) ≠ 0))
17163ad2ant1 1133 . . . 4 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → ((log‘𝐵) ∈ ℂ ∧ (log‘𝐵) ≠ 0))
18 divass 11816 . . . 4 ((𝐸 ∈ ℂ ∧ (log‘𝐶) ∈ ℂ ∧ ((log‘𝐵) ∈ ℂ ∧ (log‘𝐵) ≠ 0)) → ((𝐸 · (log‘𝐶)) / (log‘𝐵)) = (𝐸 · ((log‘𝐶) / (log‘𝐵))))
195, 9, 17, 18syl3anc 1373 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → ((𝐸 · (log‘𝐶)) / (log‘𝐵)) = (𝐸 · ((log‘𝐶) / (log‘𝐵))))
203, 19eqtrd 2764 . 2 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → ((log‘(𝐶𝑐𝐸)) / (log‘𝐵)) = (𝐸 · ((log‘𝐶) / (log‘𝐵))))
21 simp1 1136 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → 𝐵 ∈ (ℂ ∖ {0, 1}))
226adantr 480 . . . . . 6 ((𝐶 ∈ ℝ+𝐸 ∈ ℝ) → 𝐶 ∈ ℂ)
234adantl 481 . . . . . 6 ((𝐶 ∈ ℝ+𝐸 ∈ ℝ) → 𝐸 ∈ ℂ)
2422, 23cxpcld 26634 . . . . 5 ((𝐶 ∈ ℝ+𝐸 ∈ ℝ) → (𝐶𝑐𝐸) ∈ ℂ)
257adantr 480 . . . . . 6 ((𝐶 ∈ ℝ+𝐸 ∈ ℝ) → 𝐶 ≠ 0)
2622, 25, 23cxpne0d 26639 . . . . 5 ((𝐶 ∈ ℝ+𝐸 ∈ ℝ) → (𝐶𝑐𝐸) ≠ 0)
27 eldifsn 4740 . . . . 5 ((𝐶𝑐𝐸) ∈ (ℂ ∖ {0}) ↔ ((𝐶𝑐𝐸) ∈ ℂ ∧ (𝐶𝑐𝐸) ≠ 0))
2824, 26, 27sylanbrc 583 . . . 4 ((𝐶 ∈ ℝ+𝐸 ∈ ℝ) → (𝐶𝑐𝐸) ∈ (ℂ ∖ {0}))
29283adant1 1130 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → (𝐶𝑐𝐸) ∈ (ℂ ∖ {0}))
30 logbval 26693 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐶𝑐𝐸) ∈ (ℂ ∖ {0})) → (𝐵 logb (𝐶𝑐𝐸)) = ((log‘(𝐶𝑐𝐸)) / (log‘𝐵)))
3121, 29, 30syl2anc 584 . 2 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → (𝐵 logb (𝐶𝑐𝐸)) = ((log‘(𝐶𝑐𝐸)) / (log‘𝐵)))
32 rpcndif0 12933 . . . . . 6 (𝐶 ∈ ℝ+𝐶 ∈ (ℂ ∖ {0}))
3332anim2i 617 . . . . 5 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+) → (𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ (ℂ ∖ {0})))
34333adant3 1132 . . . 4 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → (𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ (ℂ ∖ {0})))
35 logbval 26693 . . . 4 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ (ℂ ∖ {0})) → (𝐵 logb 𝐶) = ((log‘𝐶) / (log‘𝐵)))
3634, 35syl 17 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → (𝐵 logb 𝐶) = ((log‘𝐶) / (log‘𝐵)))
3736oveq2d 7369 . 2 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → (𝐸 · (𝐵 logb 𝐶)) = (𝐸 · ((log‘𝐶) / (log‘𝐵))))
3820, 31, 373eqtr4d 2774 1 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → (𝐵 logb (𝐶𝑐𝐸)) = (𝐸 · (𝐵 logb 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cdif 3902  {csn 4579  {cpr 4581  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029   · cmul 11033   / cdiv 11796  +crp 12912  logclog 26480  𝑐ccxp 26481   logb clogb 26691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-z 12491  df-dec 12611  df-uz 12755  df-q 12869  df-rp 12913  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13271  df-ioc 13272  df-ico 13273  df-icc 13274  df-fz 13430  df-fzo 13577  df-fl 13715  df-mod 13793  df-seq 13928  df-exp 13988  df-fac 14200  df-bc 14229  df-hash 14257  df-shft 14993  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-limsup 15397  df-clim 15414  df-rlim 15415  df-sum 15613  df-ef 15993  df-sin 15995  df-cos 15996  df-pi 15998  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-mulr 17194  df-starv 17195  df-sca 17196  df-vsca 17197  df-ip 17198  df-tset 17199  df-ple 17200  df-ds 17202  df-unif 17203  df-hom 17204  df-cco 17205  df-rest 17345  df-topn 17346  df-0g 17364  df-gsum 17365  df-topgen 17366  df-pt 17367  df-prds 17370  df-xrs 17425  df-qtop 17430  df-imas 17431  df-xps 17433  df-mre 17507  df-mrc 17508  df-acs 17510  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-submnd 18677  df-mulg 18966  df-cntz 19215  df-cmn 19680  df-psmet 21272  df-xmet 21273  df-met 21274  df-bl 21275  df-mopn 21276  df-fbas 21277  df-fg 21278  df-cnfld 21281  df-top 22798  df-topon 22815  df-topsp 22837  df-bases 22850  df-cld 22923  df-ntr 22924  df-cls 22925  df-nei 23002  df-lp 23040  df-perf 23041  df-cn 23131  df-cnp 23132  df-haus 23219  df-tx 23466  df-hmeo 23659  df-fil 23750  df-fm 23842  df-flim 23843  df-flf 23844  df-xms 24225  df-ms 24226  df-tms 24227  df-cncf 24788  df-limc 25784  df-dv 25785  df-log 26482  df-cxp 26483  df-logb 26692
This theorem is referenced by:  relogbzexp  26703  relogbmulexp  26705
  Copyright terms: Public domain W3C validator