Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  relogbreexp Structured version   Visualization version   GIF version

Theorem relogbreexp 24915
 Description: Power law for the general logarithm for real powers: The logarithm of a positive real number to the power of a real number is equal to the product of the exponent and the logarithm of the base of the power. Property 4 of [Cohen4] p. 361. (Contributed by AV, 9-Jun-2020.)
Assertion
Ref Expression
relogbreexp ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → (𝐵 logb (𝐶𝑐𝐸)) = (𝐸 · (𝐵 logb 𝐶)))

Proof of Theorem relogbreexp
StepHypRef Expression
1 logcxp 24814 . . . . 5 ((𝐶 ∈ ℝ+𝐸 ∈ ℝ) → (log‘(𝐶𝑐𝐸)) = (𝐸 · (log‘𝐶)))
213adant1 1166 . . . 4 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → (log‘(𝐶𝑐𝐸)) = (𝐸 · (log‘𝐶)))
32oveq1d 6920 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → ((log‘(𝐶𝑐𝐸)) / (log‘𝐵)) = ((𝐸 · (log‘𝐶)) / (log‘𝐵)))
4 recn 10342 . . . . 5 (𝐸 ∈ ℝ → 𝐸 ∈ ℂ)
543ad2ant3 1171 . . . 4 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → 𝐸 ∈ ℂ)
6 rpcn 12124 . . . . . 6 (𝐶 ∈ ℝ+𝐶 ∈ ℂ)
7 rpne0 12130 . . . . . 6 (𝐶 ∈ ℝ+𝐶 ≠ 0)
86, 7logcld 24716 . . . . 5 (𝐶 ∈ ℝ+ → (log‘𝐶) ∈ ℂ)
983ad2ant2 1170 . . . 4 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → (log‘𝐶) ∈ ℂ)
10 eldifi 3959 . . . . . . 7 (𝐵 ∈ (ℂ ∖ {0, 1}) → 𝐵 ∈ ℂ)
11 eldifpr 4425 . . . . . . . 8 (𝐵 ∈ (ℂ ∖ {0, 1}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1))
1211simp2bi 1182 . . . . . . 7 (𝐵 ∈ (ℂ ∖ {0, 1}) → 𝐵 ≠ 0)
1310, 12logcld 24716 . . . . . 6 (𝐵 ∈ (ℂ ∖ {0, 1}) → (log‘𝐵) ∈ ℂ)
14 logccne0 24724 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (log‘𝐵) ≠ 0)
1511, 14sylbi 209 . . . . . 6 (𝐵 ∈ (ℂ ∖ {0, 1}) → (log‘𝐵) ≠ 0)
1613, 15jca 509 . . . . 5 (𝐵 ∈ (ℂ ∖ {0, 1}) → ((log‘𝐵) ∈ ℂ ∧ (log‘𝐵) ≠ 0))
17163ad2ant1 1169 . . . 4 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → ((log‘𝐵) ∈ ℂ ∧ (log‘𝐵) ≠ 0))
18 divass 11028 . . . 4 ((𝐸 ∈ ℂ ∧ (log‘𝐶) ∈ ℂ ∧ ((log‘𝐵) ∈ ℂ ∧ (log‘𝐵) ≠ 0)) → ((𝐸 · (log‘𝐶)) / (log‘𝐵)) = (𝐸 · ((log‘𝐶) / (log‘𝐵))))
195, 9, 17, 18syl3anc 1496 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → ((𝐸 · (log‘𝐶)) / (log‘𝐵)) = (𝐸 · ((log‘𝐶) / (log‘𝐵))))
203, 19eqtrd 2861 . 2 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → ((log‘(𝐶𝑐𝐸)) / (log‘𝐵)) = (𝐸 · ((log‘𝐶) / (log‘𝐵))))
21 simp1 1172 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → 𝐵 ∈ (ℂ ∖ {0, 1}))
226adantr 474 . . . . . 6 ((𝐶 ∈ ℝ+𝐸 ∈ ℝ) → 𝐶 ∈ ℂ)
234adantl 475 . . . . . 6 ((𝐶 ∈ ℝ+𝐸 ∈ ℝ) → 𝐸 ∈ ℂ)
2422, 23cxpcld 24853 . . . . 5 ((𝐶 ∈ ℝ+𝐸 ∈ ℝ) → (𝐶𝑐𝐸) ∈ ℂ)
257adantr 474 . . . . . 6 ((𝐶 ∈ ℝ+𝐸 ∈ ℝ) → 𝐶 ≠ 0)
2622, 25, 23cxpne0d 24858 . . . . 5 ((𝐶 ∈ ℝ+𝐸 ∈ ℝ) → (𝐶𝑐𝐸) ≠ 0)
27 eldifsn 4536 . . . . 5 ((𝐶𝑐𝐸) ∈ (ℂ ∖ {0}) ↔ ((𝐶𝑐𝐸) ∈ ℂ ∧ (𝐶𝑐𝐸) ≠ 0))
2824, 26, 27sylanbrc 580 . . . 4 ((𝐶 ∈ ℝ+𝐸 ∈ ℝ) → (𝐶𝑐𝐸) ∈ (ℂ ∖ {0}))
29283adant1 1166 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → (𝐶𝑐𝐸) ∈ (ℂ ∖ {0}))
30 logbval 24906 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐶𝑐𝐸) ∈ (ℂ ∖ {0})) → (𝐵 logb (𝐶𝑐𝐸)) = ((log‘(𝐶𝑐𝐸)) / (log‘𝐵)))
3121, 29, 30syl2anc 581 . 2 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → (𝐵 logb (𝐶𝑐𝐸)) = ((log‘(𝐶𝑐𝐸)) / (log‘𝐵)))
32 rpcndif0 12133 . . . . . 6 (𝐶 ∈ ℝ+𝐶 ∈ (ℂ ∖ {0}))
3332anim2i 612 . . . . 5 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+) → (𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ (ℂ ∖ {0})))
34333adant3 1168 . . . 4 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → (𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ (ℂ ∖ {0})))
35 logbval 24906 . . . 4 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ (ℂ ∖ {0})) → (𝐵 logb 𝐶) = ((log‘𝐶) / (log‘𝐵)))
3634, 35syl 17 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → (𝐵 logb 𝐶) = ((log‘𝐶) / (log‘𝐵)))
3736oveq2d 6921 . 2 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → (𝐸 · (𝐵 logb 𝐶)) = (𝐸 · ((log‘𝐶) / (log‘𝐵))))
3820, 31, 373eqtr4d 2871 1 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → (𝐵 logb (𝐶𝑐𝐸)) = (𝐸 · (𝐵 logb 𝐶)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   ∧ w3a 1113   = wceq 1658   ∈ wcel 2166   ≠ wne 2999   ∖ cdif 3795  {csn 4397  {cpr 4399  ‘cfv 6123  (class class class)co 6905  ℂcc 10250  ℝcr 10251  0cc0 10252  1c1 10253   · cmul 10257   / cdiv 11009  ℝ+crp 12112  logclog 24700  ↑𝑐ccxp 24701   logb clogb 24904 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330  ax-addf 10331  ax-mulf 10332 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-iin 4743  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-of 7157  df-om 7327  df-1st 7428  df-2nd 7429  df-supp 7560  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-2o 7827  df-oadd 7830  df-er 8009  df-map 8124  df-pm 8125  df-ixp 8176  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-fsupp 8545  df-fi 8586  df-sup 8617  df-inf 8618  df-oi 8684  df-card 9078  df-cda 9305  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-9 11421  df-n0 11619  df-z 11705  df-dec 11822  df-uz 11969  df-q 12072  df-rp 12113  df-xneg 12232  df-xadd 12233  df-xmul 12234  df-ioo 12467  df-ioc 12468  df-ico 12469  df-icc 12470  df-fz 12620  df-fzo 12761  df-fl 12888  df-mod 12964  df-seq 13096  df-exp 13155  df-fac 13354  df-bc 13383  df-hash 13411  df-shft 14184  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353  df-limsup 14579  df-clim 14596  df-rlim 14597  df-sum 14794  df-ef 15170  df-sin 15172  df-cos 15173  df-pi 15175  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-mulr 16319  df-starv 16320  df-sca 16321  df-vsca 16322  df-ip 16323  df-tset 16324  df-ple 16325  df-ds 16327  df-unif 16328  df-hom 16329  df-cco 16330  df-rest 16436  df-topn 16437  df-0g 16455  df-gsum 16456  df-topgen 16457  df-pt 16458  df-prds 16461  df-xrs 16515  df-qtop 16520  df-imas 16521  df-xps 16523  df-mre 16599  df-mrc 16600  df-acs 16602  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-submnd 17689  df-mulg 17895  df-cntz 18100  df-cmn 18548  df-psmet 20098  df-xmet 20099  df-met 20100  df-bl 20101  df-mopn 20102  df-fbas 20103  df-fg 20104  df-cnfld 20107  df-top 21069  df-topon 21086  df-topsp 21108  df-bases 21121  df-cld 21194  df-ntr 21195  df-cls 21196  df-nei 21273  df-lp 21311  df-perf 21312  df-cn 21402  df-cnp 21403  df-haus 21490  df-tx 21736  df-hmeo 21929  df-fil 22020  df-fm 22112  df-flim 22113  df-flf 22114  df-xms 22495  df-ms 22496  df-tms 22497  df-cncf 23051  df-limc 24029  df-dv 24030  df-log 24702  df-cxp 24703  df-logb 24905 This theorem is referenced by:  relogbzexp  24916  relogbmulexp  24918
 Copyright terms: Public domain W3C validator