MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relogbreexp Structured version   Visualization version   GIF version

Theorem relogbreexp 25906
Description: Power law for the general logarithm for real powers: The logarithm of a positive real number to the power of a real number is equal to the product of the exponent and the logarithm of the base of the power. Property 4 of [Cohen4] p. 361. (Contributed by AV, 9-Jun-2020.)
Assertion
Ref Expression
relogbreexp ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → (𝐵 logb (𝐶𝑐𝐸)) = (𝐸 · (𝐵 logb 𝐶)))

Proof of Theorem relogbreexp
StepHypRef Expression
1 logcxp 25805 . . . . 5 ((𝐶 ∈ ℝ+𝐸 ∈ ℝ) → (log‘(𝐶𝑐𝐸)) = (𝐸 · (log‘𝐶)))
213adant1 1128 . . . 4 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → (log‘(𝐶𝑐𝐸)) = (𝐸 · (log‘𝐶)))
32oveq1d 7283 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → ((log‘(𝐶𝑐𝐸)) / (log‘𝐵)) = ((𝐸 · (log‘𝐶)) / (log‘𝐵)))
4 recn 10945 . . . . 5 (𝐸 ∈ ℝ → 𝐸 ∈ ℂ)
543ad2ant3 1133 . . . 4 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → 𝐸 ∈ ℂ)
6 rpcn 12722 . . . . . 6 (𝐶 ∈ ℝ+𝐶 ∈ ℂ)
7 rpne0 12728 . . . . . 6 (𝐶 ∈ ℝ+𝐶 ≠ 0)
86, 7logcld 25707 . . . . 5 (𝐶 ∈ ℝ+ → (log‘𝐶) ∈ ℂ)
983ad2ant2 1132 . . . 4 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → (log‘𝐶) ∈ ℂ)
10 eldifi 4065 . . . . . . 7 (𝐵 ∈ (ℂ ∖ {0, 1}) → 𝐵 ∈ ℂ)
11 eldifpr 4598 . . . . . . . 8 (𝐵 ∈ (ℂ ∖ {0, 1}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1))
1211simp2bi 1144 . . . . . . 7 (𝐵 ∈ (ℂ ∖ {0, 1}) → 𝐵 ≠ 0)
1310, 12logcld 25707 . . . . . 6 (𝐵 ∈ (ℂ ∖ {0, 1}) → (log‘𝐵) ∈ ℂ)
14 logccne0 25715 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (log‘𝐵) ≠ 0)
1511, 14sylbi 216 . . . . . 6 (𝐵 ∈ (ℂ ∖ {0, 1}) → (log‘𝐵) ≠ 0)
1613, 15jca 511 . . . . 5 (𝐵 ∈ (ℂ ∖ {0, 1}) → ((log‘𝐵) ∈ ℂ ∧ (log‘𝐵) ≠ 0))
17163ad2ant1 1131 . . . 4 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → ((log‘𝐵) ∈ ℂ ∧ (log‘𝐵) ≠ 0))
18 divass 11634 . . . 4 ((𝐸 ∈ ℂ ∧ (log‘𝐶) ∈ ℂ ∧ ((log‘𝐵) ∈ ℂ ∧ (log‘𝐵) ≠ 0)) → ((𝐸 · (log‘𝐶)) / (log‘𝐵)) = (𝐸 · ((log‘𝐶) / (log‘𝐵))))
195, 9, 17, 18syl3anc 1369 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → ((𝐸 · (log‘𝐶)) / (log‘𝐵)) = (𝐸 · ((log‘𝐶) / (log‘𝐵))))
203, 19eqtrd 2779 . 2 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → ((log‘(𝐶𝑐𝐸)) / (log‘𝐵)) = (𝐸 · ((log‘𝐶) / (log‘𝐵))))
21 simp1 1134 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → 𝐵 ∈ (ℂ ∖ {0, 1}))
226adantr 480 . . . . . 6 ((𝐶 ∈ ℝ+𝐸 ∈ ℝ) → 𝐶 ∈ ℂ)
234adantl 481 . . . . . 6 ((𝐶 ∈ ℝ+𝐸 ∈ ℝ) → 𝐸 ∈ ℂ)
2422, 23cxpcld 25844 . . . . 5 ((𝐶 ∈ ℝ+𝐸 ∈ ℝ) → (𝐶𝑐𝐸) ∈ ℂ)
257adantr 480 . . . . . 6 ((𝐶 ∈ ℝ+𝐸 ∈ ℝ) → 𝐶 ≠ 0)
2622, 25, 23cxpne0d 25849 . . . . 5 ((𝐶 ∈ ℝ+𝐸 ∈ ℝ) → (𝐶𝑐𝐸) ≠ 0)
27 eldifsn 4725 . . . . 5 ((𝐶𝑐𝐸) ∈ (ℂ ∖ {0}) ↔ ((𝐶𝑐𝐸) ∈ ℂ ∧ (𝐶𝑐𝐸) ≠ 0))
2824, 26, 27sylanbrc 582 . . . 4 ((𝐶 ∈ ℝ+𝐸 ∈ ℝ) → (𝐶𝑐𝐸) ∈ (ℂ ∖ {0}))
29283adant1 1128 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → (𝐶𝑐𝐸) ∈ (ℂ ∖ {0}))
30 logbval 25897 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐶𝑐𝐸) ∈ (ℂ ∖ {0})) → (𝐵 logb (𝐶𝑐𝐸)) = ((log‘(𝐶𝑐𝐸)) / (log‘𝐵)))
3121, 29, 30syl2anc 583 . 2 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → (𝐵 logb (𝐶𝑐𝐸)) = ((log‘(𝐶𝑐𝐸)) / (log‘𝐵)))
32 rpcndif0 12731 . . . . . 6 (𝐶 ∈ ℝ+𝐶 ∈ (ℂ ∖ {0}))
3332anim2i 616 . . . . 5 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+) → (𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ (ℂ ∖ {0})))
34333adant3 1130 . . . 4 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → (𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ (ℂ ∖ {0})))
35 logbval 25897 . . . 4 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ (ℂ ∖ {0})) → (𝐵 logb 𝐶) = ((log‘𝐶) / (log‘𝐵)))
3634, 35syl 17 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → (𝐵 logb 𝐶) = ((log‘𝐶) / (log‘𝐵)))
3736oveq2d 7284 . 2 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → (𝐸 · (𝐵 logb 𝐶)) = (𝐸 · ((log‘𝐶) / (log‘𝐵))))
3820, 31, 373eqtr4d 2789 1 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → (𝐵 logb (𝐶𝑐𝐸)) = (𝐸 · (𝐵 logb 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1541  wcel 2109  wne 2944  cdif 3888  {csn 4566  {cpr 4568  cfv 6430  (class class class)co 7268  cc 10853  cr 10854  0cc0 10855  1c1 10856   · cmul 10860   / cdiv 11615  +crp 12712  logclog 25691  𝑐ccxp 25692   logb clogb 25895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-inf2 9360  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933  ax-addf 10934  ax-mulf 10935
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-iin 4932  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-se 5544  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-isom 6439  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-of 7524  df-om 7701  df-1st 7817  df-2nd 7818  df-supp 7962  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-2o 8282  df-er 8472  df-map 8591  df-pm 8592  df-ixp 8660  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-fsupp 9090  df-fi 9131  df-sup 9162  df-inf 9163  df-oi 9230  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-7 12024  df-8 12025  df-9 12026  df-n0 12217  df-z 12303  df-dec 12420  df-uz 12565  df-q 12671  df-rp 12713  df-xneg 12830  df-xadd 12831  df-xmul 12832  df-ioo 13065  df-ioc 13066  df-ico 13067  df-icc 13068  df-fz 13222  df-fzo 13365  df-fl 13493  df-mod 13571  df-seq 13703  df-exp 13764  df-fac 13969  df-bc 13998  df-hash 14026  df-shft 14759  df-cj 14791  df-re 14792  df-im 14793  df-sqrt 14927  df-abs 14928  df-limsup 15161  df-clim 15178  df-rlim 15179  df-sum 15379  df-ef 15758  df-sin 15760  df-cos 15761  df-pi 15763  df-struct 16829  df-sets 16846  df-slot 16864  df-ndx 16876  df-base 16894  df-ress 16923  df-plusg 16956  df-mulr 16957  df-starv 16958  df-sca 16959  df-vsca 16960  df-ip 16961  df-tset 16962  df-ple 16963  df-ds 16965  df-unif 16966  df-hom 16967  df-cco 16968  df-rest 17114  df-topn 17115  df-0g 17133  df-gsum 17134  df-topgen 17135  df-pt 17136  df-prds 17139  df-xrs 17194  df-qtop 17199  df-imas 17200  df-xps 17202  df-mre 17276  df-mrc 17277  df-acs 17279  df-mgm 18307  df-sgrp 18356  df-mnd 18367  df-submnd 18412  df-mulg 18682  df-cntz 18904  df-cmn 19369  df-psmet 20570  df-xmet 20571  df-met 20572  df-bl 20573  df-mopn 20574  df-fbas 20575  df-fg 20576  df-cnfld 20579  df-top 22024  df-topon 22041  df-topsp 22063  df-bases 22077  df-cld 22151  df-ntr 22152  df-cls 22153  df-nei 22230  df-lp 22268  df-perf 22269  df-cn 22359  df-cnp 22360  df-haus 22447  df-tx 22694  df-hmeo 22887  df-fil 22978  df-fm 23070  df-flim 23071  df-flf 23072  df-xms 23454  df-ms 23455  df-tms 23456  df-cncf 24022  df-limc 25011  df-dv 25012  df-log 25693  df-cxp 25694  df-logb 25896
This theorem is referenced by:  relogbzexp  25907  relogbmulexp  25909
  Copyright terms: Public domain W3C validator