![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2logb9irrALT | Structured version Visualization version GIF version |
Description: Alternate proof of 2logb9irr 26740: The logarithm of nine to base two is irrational. (Contributed by AV, 31-Dec-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
2logb9irrALT | ⊢ (2 logb 9) ∈ (ℝ ∖ ℚ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sq3 14188 | . . . . 5 ⊢ (3↑2) = 9 | |
2 | 1 | eqcomi 2734 | . . . 4 ⊢ 9 = (3↑2) |
3 | 2 | oveq2i 7424 | . . 3 ⊢ (2 logb 9) = (2 logb (3↑2)) |
4 | 2cn 12312 | . . . . 5 ⊢ 2 ∈ ℂ | |
5 | 2ne0 12341 | . . . . 5 ⊢ 2 ≠ 0 | |
6 | 1ne2 12445 | . . . . . 6 ⊢ 1 ≠ 2 | |
7 | 6 | necomi 2985 | . . . . 5 ⊢ 2 ≠ 1 |
8 | eldifpr 4657 | . . . . 5 ⊢ (2 ∈ (ℂ ∖ {0, 1}) ↔ (2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1)) | |
9 | 4, 5, 7, 8 | mpbir3an 1338 | . . . 4 ⊢ 2 ∈ (ℂ ∖ {0, 1}) |
10 | 3rp 13007 | . . . 4 ⊢ 3 ∈ ℝ+ | |
11 | 2z 12619 | . . . 4 ⊢ 2 ∈ ℤ | |
12 | relogbzexp 26721 | . . . 4 ⊢ ((2 ∈ (ℂ ∖ {0, 1}) ∧ 3 ∈ ℝ+ ∧ 2 ∈ ℤ) → (2 logb (3↑2)) = (2 · (2 logb 3))) | |
13 | 9, 10, 11, 12 | mp3an 1457 | . . 3 ⊢ (2 logb (3↑2)) = (2 · (2 logb 3)) |
14 | 3, 13 | eqtri 2753 | . 2 ⊢ (2 logb 9) = (2 · (2 logb 3)) |
15 | 3cn 12318 | . . . . . 6 ⊢ 3 ∈ ℂ | |
16 | 3ne0 12343 | . . . . . 6 ⊢ 3 ≠ 0 | |
17 | eldifsn 4787 | . . . . . 6 ⊢ (3 ∈ (ℂ ∖ {0}) ↔ (3 ∈ ℂ ∧ 3 ≠ 0)) | |
18 | 15, 16, 17 | mpbir2an 709 | . . . . 5 ⊢ 3 ∈ (ℂ ∖ {0}) |
19 | logbcl 26712 | . . . . 5 ⊢ ((2 ∈ (ℂ ∖ {0, 1}) ∧ 3 ∈ (ℂ ∖ {0})) → (2 logb 3) ∈ ℂ) | |
20 | 9, 18, 19 | mp2an 690 | . . . 4 ⊢ (2 logb 3) ∈ ℂ |
21 | 4, 20 | mulcomi 11247 | . . 3 ⊢ (2 · (2 logb 3)) = ((2 logb 3) · 2) |
22 | 2logb3irr 26742 | . . . 4 ⊢ (2 logb 3) ∈ (ℝ ∖ ℚ) | |
23 | zq 12963 | . . . . 5 ⊢ (2 ∈ ℤ → 2 ∈ ℚ) | |
24 | 11, 23 | ax-mp 5 | . . . 4 ⊢ 2 ∈ ℚ |
25 | irrmul 12983 | . . . 4 ⊢ (((2 logb 3) ∈ (ℝ ∖ ℚ) ∧ 2 ∈ ℚ ∧ 2 ≠ 0) → ((2 logb 3) · 2) ∈ (ℝ ∖ ℚ)) | |
26 | 22, 24, 5, 25 | mp3an 1457 | . . 3 ⊢ ((2 logb 3) · 2) ∈ (ℝ ∖ ℚ) |
27 | 21, 26 | eqeltri 2821 | . 2 ⊢ (2 · (2 logb 3)) ∈ (ℝ ∖ ℚ) |
28 | 14, 27 | eqeltri 2821 | 1 ⊢ (2 logb 9) ∈ (ℝ ∖ ℚ) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 ≠ wne 2930 ∖ cdif 3938 {csn 4625 {cpr 4627 (class class class)co 7413 ℂcc 11131 ℝcr 11132 0cc0 11133 1c1 11134 · cmul 11138 2c2 12292 3c3 12293 9c9 12299 ℤcz 12583 ℚcq 12957 ℝ+crp 13001 ↑cexp 14053 logb clogb 26709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-inf2 9659 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 ax-pre-sup 11211 ax-addf 11212 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-iin 4995 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-om 7866 df-1st 7987 df-2nd 7988 df-supp 8159 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8718 df-map 8840 df-pm 8841 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9381 df-fi 9429 df-sup 9460 df-inf 9461 df-oi 9528 df-card 9957 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-div 11897 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-5 12303 df-6 12304 df-7 12305 df-8 12306 df-9 12307 df-n0 12498 df-z 12584 df-dec 12703 df-uz 12848 df-q 12958 df-rp 13002 df-xneg 13119 df-xadd 13120 df-xmul 13121 df-ioo 13355 df-ioc 13356 df-ico 13357 df-icc 13358 df-fz 13512 df-fzo 13655 df-fl 13784 df-mod 13862 df-seq 13994 df-exp 14054 df-fac 14260 df-bc 14289 df-hash 14317 df-shft 15041 df-cj 15073 df-re 15074 df-im 15075 df-sqrt 15209 df-abs 15210 df-limsup 15442 df-clim 15459 df-rlim 15460 df-sum 15660 df-ef 16038 df-sin 16040 df-cos 16041 df-pi 16043 df-dvds 16226 df-gcd 16464 df-prm 16637 df-struct 17110 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-ress 17204 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-rest 17398 df-topn 17399 df-0g 17417 df-gsum 17418 df-topgen 17419 df-pt 17420 df-prds 17423 df-xrs 17478 df-qtop 17483 df-imas 17484 df-xps 17486 df-mre 17560 df-mrc 17561 df-acs 17563 df-mgm 18594 df-sgrp 18673 df-mnd 18689 df-submnd 18735 df-mulg 19023 df-cntz 19267 df-cmn 19736 df-psmet 21270 df-xmet 21271 df-met 21272 df-bl 21273 df-mopn 21274 df-fbas 21275 df-fg 21276 df-cnfld 21279 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22862 df-cld 22936 df-ntr 22937 df-cls 22938 df-nei 23015 df-lp 23053 df-perf 23054 df-cn 23144 df-cnp 23145 df-haus 23232 df-tx 23479 df-hmeo 23672 df-fil 23763 df-fm 23855 df-flim 23856 df-flf 23857 df-xms 24239 df-ms 24240 df-tms 24241 df-cncf 24811 df-limc 25808 df-dv 25809 df-log 26503 df-cxp 26504 df-logb 26710 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |