![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2logb9irrALT | Structured version Visualization version GIF version |
Description: Alternate proof of 2logb9irr 26701: The logarithm of nine to base two is irrational. (Contributed by AV, 31-Dec-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
2logb9irrALT | ⊢ (2 logb 9) ∈ (ℝ ∖ ℚ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sq3 14179 | . . . . 5 ⊢ (3↑2) = 9 | |
2 | 1 | eqcomi 2736 | . . . 4 ⊢ 9 = (3↑2) |
3 | 2 | oveq2i 7425 | . . 3 ⊢ (2 logb 9) = (2 logb (3↑2)) |
4 | 2cn 12303 | . . . . 5 ⊢ 2 ∈ ℂ | |
5 | 2ne0 12332 | . . . . 5 ⊢ 2 ≠ 0 | |
6 | 1ne2 12436 | . . . . . 6 ⊢ 1 ≠ 2 | |
7 | 6 | necomi 2990 | . . . . 5 ⊢ 2 ≠ 1 |
8 | eldifpr 4656 | . . . . 5 ⊢ (2 ∈ (ℂ ∖ {0, 1}) ↔ (2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1)) | |
9 | 4, 5, 7, 8 | mpbir3an 1339 | . . . 4 ⊢ 2 ∈ (ℂ ∖ {0, 1}) |
10 | 3rp 12998 | . . . 4 ⊢ 3 ∈ ℝ+ | |
11 | 2z 12610 | . . . 4 ⊢ 2 ∈ ℤ | |
12 | relogbzexp 26682 | . . . 4 ⊢ ((2 ∈ (ℂ ∖ {0, 1}) ∧ 3 ∈ ℝ+ ∧ 2 ∈ ℤ) → (2 logb (3↑2)) = (2 · (2 logb 3))) | |
13 | 9, 10, 11, 12 | mp3an 1458 | . . 3 ⊢ (2 logb (3↑2)) = (2 · (2 logb 3)) |
14 | 3, 13 | eqtri 2755 | . 2 ⊢ (2 logb 9) = (2 · (2 logb 3)) |
15 | 3cn 12309 | . . . . . 6 ⊢ 3 ∈ ℂ | |
16 | 3ne0 12334 | . . . . . 6 ⊢ 3 ≠ 0 | |
17 | eldifsn 4786 | . . . . . 6 ⊢ (3 ∈ (ℂ ∖ {0}) ↔ (3 ∈ ℂ ∧ 3 ≠ 0)) | |
18 | 15, 16, 17 | mpbir2an 710 | . . . . 5 ⊢ 3 ∈ (ℂ ∖ {0}) |
19 | logbcl 26673 | . . . . 5 ⊢ ((2 ∈ (ℂ ∖ {0, 1}) ∧ 3 ∈ (ℂ ∖ {0})) → (2 logb 3) ∈ ℂ) | |
20 | 9, 18, 19 | mp2an 691 | . . . 4 ⊢ (2 logb 3) ∈ ℂ |
21 | 4, 20 | mulcomi 11238 | . . 3 ⊢ (2 · (2 logb 3)) = ((2 logb 3) · 2) |
22 | 2logb3irr 26703 | . . . 4 ⊢ (2 logb 3) ∈ (ℝ ∖ ℚ) | |
23 | zq 12954 | . . . . 5 ⊢ (2 ∈ ℤ → 2 ∈ ℚ) | |
24 | 11, 23 | ax-mp 5 | . . . 4 ⊢ 2 ∈ ℚ |
25 | irrmul 12974 | . . . 4 ⊢ (((2 logb 3) ∈ (ℝ ∖ ℚ) ∧ 2 ∈ ℚ ∧ 2 ≠ 0) → ((2 logb 3) · 2) ∈ (ℝ ∖ ℚ)) | |
26 | 22, 24, 5, 25 | mp3an 1458 | . . 3 ⊢ ((2 logb 3) · 2) ∈ (ℝ ∖ ℚ) |
27 | 21, 26 | eqeltri 2824 | . 2 ⊢ (2 · (2 logb 3)) ∈ (ℝ ∖ ℚ) |
28 | 14, 27 | eqeltri 2824 | 1 ⊢ (2 logb 9) ∈ (ℝ ∖ ℚ) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 ≠ wne 2935 ∖ cdif 3941 {csn 4624 {cpr 4626 (class class class)co 7414 ℂcc 11122 ℝcr 11123 0cc0 11124 1c1 11125 · cmul 11129 2c2 12283 3c3 12284 9c9 12290 ℤcz 12574 ℚcq 12948 ℝ+crp 12992 ↑cexp 14044 logb clogb 26670 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-inf2 9650 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 ax-pre-sup 11202 ax-addf 11203 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7677 df-om 7863 df-1st 7985 df-2nd 7986 df-supp 8158 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-er 8716 df-map 8836 df-pm 8837 df-ixp 8906 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-fsupp 9376 df-fi 9420 df-sup 9451 df-inf 9452 df-oi 9519 df-card 9948 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-div 11888 df-nn 12229 df-2 12291 df-3 12292 df-4 12293 df-5 12294 df-6 12295 df-7 12296 df-8 12297 df-9 12298 df-n0 12489 df-z 12575 df-dec 12694 df-uz 12839 df-q 12949 df-rp 12993 df-xneg 13110 df-xadd 13111 df-xmul 13112 df-ioo 13346 df-ioc 13347 df-ico 13348 df-icc 13349 df-fz 13503 df-fzo 13646 df-fl 13775 df-mod 13853 df-seq 13985 df-exp 14045 df-fac 14251 df-bc 14280 df-hash 14308 df-shft 15032 df-cj 15064 df-re 15065 df-im 15066 df-sqrt 15200 df-abs 15201 df-limsup 15433 df-clim 15450 df-rlim 15451 df-sum 15651 df-ef 16029 df-sin 16031 df-cos 16032 df-pi 16034 df-dvds 16217 df-gcd 16455 df-prm 16628 df-struct 17101 df-sets 17118 df-slot 17136 df-ndx 17148 df-base 17166 df-ress 17195 df-plusg 17231 df-mulr 17232 df-starv 17233 df-sca 17234 df-vsca 17235 df-ip 17236 df-tset 17237 df-ple 17238 df-ds 17240 df-unif 17241 df-hom 17242 df-cco 17243 df-rest 17389 df-topn 17390 df-0g 17408 df-gsum 17409 df-topgen 17410 df-pt 17411 df-prds 17414 df-xrs 17469 df-qtop 17474 df-imas 17475 df-xps 17477 df-mre 17551 df-mrc 17552 df-acs 17554 df-mgm 18585 df-sgrp 18664 df-mnd 18680 df-submnd 18726 df-mulg 19008 df-cntz 19252 df-cmn 19721 df-psmet 21251 df-xmet 21252 df-met 21253 df-bl 21254 df-mopn 21255 df-fbas 21256 df-fg 21257 df-cnfld 21260 df-top 22770 df-topon 22787 df-topsp 22809 df-bases 22823 df-cld 22897 df-ntr 22898 df-cls 22899 df-nei 22976 df-lp 23014 df-perf 23015 df-cn 23105 df-cnp 23106 df-haus 23193 df-tx 23440 df-hmeo 23633 df-fil 23724 df-fm 23816 df-flim 23817 df-flf 23818 df-xms 24200 df-ms 24201 df-tms 24202 df-cncf 24772 df-limc 25769 df-dv 25770 df-log 26464 df-cxp 26465 df-logb 26671 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |