| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nnpw2blen | Structured version Visualization version GIF version | ||
| Description: A positive integer is between 2 to the power of its binary length minus 1 and 2 to the power of its binary length. (Contributed by AV, 31-May-2020.) |
| Ref | Expression |
|---|---|
| nnpw2blen | ⊢ (𝑁 ∈ ℕ → ((2↑((#b‘𝑁) − 1)) ≤ 𝑁 ∧ 𝑁 < (2↑(#b‘𝑁)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2rp 12897 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ+ | |
| 2 | 1 | a1i 11 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℝ+) |
| 3 | nnrp 12904 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+) | |
| 4 | 1ne2 12335 | . . . . . . . . . . 11 ⊢ 1 ≠ 2 | |
| 5 | 4 | necomi 2983 | . . . . . . . . . 10 ⊢ 2 ≠ 1 |
| 6 | 5 | a1i 11 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 2 ≠ 1) |
| 7 | relogbcl 26711 | . . . . . . . . 9 ⊢ ((2 ∈ ℝ+ ∧ 𝑁 ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb 𝑁) ∈ ℝ) | |
| 8 | 2, 3, 6, 7 | syl3anc 1373 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (2 logb 𝑁) ∈ ℝ) |
| 9 | 8 | flcld 13704 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (⌊‘(2 logb 𝑁)) ∈ ℤ) |
| 10 | 9 | zcnd 12584 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (⌊‘(2 logb 𝑁)) ∈ ℂ) |
| 11 | pncan1 11548 | . . . . . 6 ⊢ ((⌊‘(2 logb 𝑁)) ∈ ℂ → (((⌊‘(2 logb 𝑁)) + 1) − 1) = (⌊‘(2 logb 𝑁))) | |
| 12 | 10, 11 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (((⌊‘(2 logb 𝑁)) + 1) − 1) = (⌊‘(2 logb 𝑁))) |
| 13 | 12 | oveq2d 7368 | . . . 4 ⊢ (𝑁 ∈ ℕ → (2↑(((⌊‘(2 logb 𝑁)) + 1) − 1)) = (2↑(⌊‘(2 logb 𝑁)))) |
| 14 | blennn 48700 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (#b‘𝑁) = ((⌊‘(2 logb 𝑁)) + 1)) | |
| 15 | 14 | oveq1d 7367 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((#b‘𝑁) − 1) = (((⌊‘(2 logb 𝑁)) + 1) − 1)) |
| 16 | 15 | oveq2d 7368 | . . . 4 ⊢ (𝑁 ∈ ℕ → (2↑((#b‘𝑁) − 1)) = (2↑(((⌊‘(2 logb 𝑁)) + 1) − 1))) |
| 17 | 2cnd 12210 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℂ) | |
| 18 | 2ne0 12236 | . . . . . 6 ⊢ 2 ≠ 0 | |
| 19 | 18 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 2 ≠ 0) |
| 20 | 17, 19, 9 | cxpexpzd 26648 | . . . 4 ⊢ (𝑁 ∈ ℕ → (2↑𝑐(⌊‘(2 logb 𝑁))) = (2↑(⌊‘(2 logb 𝑁)))) |
| 21 | 13, 16, 20 | 3eqtr4d 2778 | . . 3 ⊢ (𝑁 ∈ ℕ → (2↑((#b‘𝑁) − 1)) = (2↑𝑐(⌊‘(2 logb 𝑁)))) |
| 22 | flle 13705 | . . . . . 6 ⊢ ((2 logb 𝑁) ∈ ℝ → (⌊‘(2 logb 𝑁)) ≤ (2 logb 𝑁)) | |
| 23 | 8, 22 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (⌊‘(2 logb 𝑁)) ≤ (2 logb 𝑁)) |
| 24 | 2re 12206 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
| 25 | 24 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℝ) |
| 26 | 1lt2 12298 | . . . . . . 7 ⊢ 1 < 2 | |
| 27 | 26 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 1 < 2) |
| 28 | 9 | zred 12583 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (⌊‘(2 logb 𝑁)) ∈ ℝ) |
| 29 | 25, 27, 28, 8 | cxpled 26657 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((⌊‘(2 logb 𝑁)) ≤ (2 logb 𝑁) ↔ (2↑𝑐(⌊‘(2 logb 𝑁))) ≤ (2↑𝑐(2 logb 𝑁)))) |
| 30 | 23, 29 | mpbid 232 | . . . 4 ⊢ (𝑁 ∈ ℕ → (2↑𝑐(⌊‘(2 logb 𝑁))) ≤ (2↑𝑐(2 logb 𝑁))) |
| 31 | 2cn 12207 | . . . . . 6 ⊢ 2 ∈ ℂ | |
| 32 | eldifpr 4610 | . . . . . 6 ⊢ (2 ∈ (ℂ ∖ {0, 1}) ↔ (2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1)) | |
| 33 | 31, 18, 5, 32 | mpbir3an 1342 | . . . . 5 ⊢ 2 ∈ (ℂ ∖ {0, 1}) |
| 34 | nncn 12140 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
| 35 | nnne0 12166 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) | |
| 36 | eldifsn 4737 | . . . . . 6 ⊢ (𝑁 ∈ (ℂ ∖ {0}) ↔ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) | |
| 37 | 34, 35, 36 | sylanbrc 583 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ (ℂ ∖ {0})) |
| 38 | cxplogb 26724 | . . . . 5 ⊢ ((2 ∈ (ℂ ∖ {0, 1}) ∧ 𝑁 ∈ (ℂ ∖ {0})) → (2↑𝑐(2 logb 𝑁)) = 𝑁) | |
| 39 | 33, 37, 38 | sylancr 587 | . . . 4 ⊢ (𝑁 ∈ ℕ → (2↑𝑐(2 logb 𝑁)) = 𝑁) |
| 40 | 30, 39 | breqtrd 5119 | . . 3 ⊢ (𝑁 ∈ ℕ → (2↑𝑐(⌊‘(2 logb 𝑁))) ≤ 𝑁) |
| 41 | 21, 40 | eqbrtrd 5115 | . 2 ⊢ (𝑁 ∈ ℕ → (2↑((#b‘𝑁) − 1)) ≤ 𝑁) |
| 42 | flltp1 13706 | . . . . . 6 ⊢ ((2 logb 𝑁) ∈ ℝ → (2 logb 𝑁) < ((⌊‘(2 logb 𝑁)) + 1)) | |
| 43 | 8, 42 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (2 logb 𝑁) < ((⌊‘(2 logb 𝑁)) + 1)) |
| 44 | 9 | peano2zd 12586 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → ((⌊‘(2 logb 𝑁)) + 1) ∈ ℤ) |
| 45 | 44 | zred 12583 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ((⌊‘(2 logb 𝑁)) + 1) ∈ ℝ) |
| 46 | 25, 27, 8, 45 | cxpltd 26656 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((2 logb 𝑁) < ((⌊‘(2 logb 𝑁)) + 1) ↔ (2↑𝑐(2 logb 𝑁)) < (2↑𝑐((⌊‘(2 logb 𝑁)) + 1)))) |
| 47 | 43, 46 | mpbid 232 | . . . 4 ⊢ (𝑁 ∈ ℕ → (2↑𝑐(2 logb 𝑁)) < (2↑𝑐((⌊‘(2 logb 𝑁)) + 1))) |
| 48 | 17, 19, 44 | cxpexpzd 26648 | . . . 4 ⊢ (𝑁 ∈ ℕ → (2↑𝑐((⌊‘(2 logb 𝑁)) + 1)) = (2↑((⌊‘(2 logb 𝑁)) + 1))) |
| 49 | 47, 39, 48 | 3brtr3d 5124 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 < (2↑((⌊‘(2 logb 𝑁)) + 1))) |
| 50 | 14 | oveq2d 7368 | . . 3 ⊢ (𝑁 ∈ ℕ → (2↑(#b‘𝑁)) = (2↑((⌊‘(2 logb 𝑁)) + 1))) |
| 51 | 49, 50 | breqtrrd 5121 | . 2 ⊢ (𝑁 ∈ ℕ → 𝑁 < (2↑(#b‘𝑁))) |
| 52 | 41, 51 | jca 511 | 1 ⊢ (𝑁 ∈ ℕ → ((2↑((#b‘𝑁) − 1)) ≤ 𝑁 ∧ 𝑁 < (2↑(#b‘𝑁)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∖ cdif 3895 {csn 4575 {cpr 4577 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 ℂcc 11011 ℝcr 11012 0cc0 11013 1c1 11014 + caddc 11016 < clt 11153 ≤ cle 11154 − cmin 11351 ℕcn 12132 2c2 12187 ℝ+crp 12892 ⌊cfl 13696 ↑cexp 13970 ↑𝑐ccxp 26492 logb clogb 26702 #bcblen 48694 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 ax-addf 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-pm 8759 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-fi 9302 df-sup 9333 df-inf 9334 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-q 12849 df-rp 12893 df-xneg 13013 df-xadd 13014 df-xmul 13015 df-ioo 13251 df-ioc 13252 df-ico 13253 df-icc 13254 df-fz 13410 df-fzo 13557 df-fl 13698 df-mod 13776 df-seq 13911 df-exp 13971 df-fac 14183 df-bc 14212 df-hash 14240 df-shft 14976 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-limsup 15380 df-clim 15397 df-rlim 15398 df-sum 15596 df-ef 15976 df-sin 15978 df-cos 15979 df-pi 15981 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-starv 17178 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ds 17185 df-unif 17186 df-hom 17187 df-cco 17188 df-rest 17328 df-topn 17329 df-0g 17347 df-gsum 17348 df-topgen 17349 df-pt 17350 df-prds 17353 df-xrs 17408 df-qtop 17413 df-imas 17414 df-xps 17416 df-mre 17490 df-mrc 17491 df-acs 17493 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-mulg 18983 df-cntz 19231 df-cmn 19696 df-psmet 21285 df-xmet 21286 df-met 21287 df-bl 21288 df-mopn 21289 df-fbas 21290 df-fg 21291 df-cnfld 21294 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-cld 22935 df-ntr 22936 df-cls 22937 df-nei 23014 df-lp 23052 df-perf 23053 df-cn 23143 df-cnp 23144 df-haus 23231 df-tx 23478 df-hmeo 23671 df-fil 23762 df-fm 23854 df-flim 23855 df-flf 23856 df-xms 24236 df-ms 24237 df-tms 24238 df-cncf 24799 df-limc 25795 df-dv 25796 df-log 26493 df-cxp 26494 df-logb 26703 df-blen 48695 |
| This theorem is referenced by: nnpw2blenfzo 48706 nnpw2pmod 48708 |
| Copyright terms: Public domain | W3C validator |