![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nnpw2blen | Structured version Visualization version GIF version |
Description: A positive integer is between 2 to the power of its binary length minus 1 and 2 to the power of its binary length. (Contributed by AV, 31-May-2020.) |
Ref | Expression |
---|---|
nnpw2blen | ⊢ (𝑁 ∈ ℕ → ((2↑((#b‘𝑁) − 1)) ≤ 𝑁 ∧ 𝑁 < (2↑(#b‘𝑁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2rp 13037 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ+ | |
2 | 1 | a1i 11 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℝ+) |
3 | nnrp 13044 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+) | |
4 | 1ne2 12472 | . . . . . . . . . . 11 ⊢ 1 ≠ 2 | |
5 | 4 | necomi 2993 | . . . . . . . . . 10 ⊢ 2 ≠ 1 |
6 | 5 | a1i 11 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 2 ≠ 1) |
7 | relogbcl 26831 | . . . . . . . . 9 ⊢ ((2 ∈ ℝ+ ∧ 𝑁 ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb 𝑁) ∈ ℝ) | |
8 | 2, 3, 6, 7 | syl3anc 1370 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (2 logb 𝑁) ∈ ℝ) |
9 | 8 | flcld 13835 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (⌊‘(2 logb 𝑁)) ∈ ℤ) |
10 | 9 | zcnd 12721 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (⌊‘(2 logb 𝑁)) ∈ ℂ) |
11 | pncan1 11685 | . . . . . 6 ⊢ ((⌊‘(2 logb 𝑁)) ∈ ℂ → (((⌊‘(2 logb 𝑁)) + 1) − 1) = (⌊‘(2 logb 𝑁))) | |
12 | 10, 11 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (((⌊‘(2 logb 𝑁)) + 1) − 1) = (⌊‘(2 logb 𝑁))) |
13 | 12 | oveq2d 7447 | . . . 4 ⊢ (𝑁 ∈ ℕ → (2↑(((⌊‘(2 logb 𝑁)) + 1) − 1)) = (2↑(⌊‘(2 logb 𝑁)))) |
14 | blennn 48425 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (#b‘𝑁) = ((⌊‘(2 logb 𝑁)) + 1)) | |
15 | 14 | oveq1d 7446 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((#b‘𝑁) − 1) = (((⌊‘(2 logb 𝑁)) + 1) − 1)) |
16 | 15 | oveq2d 7447 | . . . 4 ⊢ (𝑁 ∈ ℕ → (2↑((#b‘𝑁) − 1)) = (2↑(((⌊‘(2 logb 𝑁)) + 1) − 1))) |
17 | 2cnd 12342 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℂ) | |
18 | 2ne0 12368 | . . . . . 6 ⊢ 2 ≠ 0 | |
19 | 18 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 2 ≠ 0) |
20 | 17, 19, 9 | cxpexpzd 26768 | . . . 4 ⊢ (𝑁 ∈ ℕ → (2↑𝑐(⌊‘(2 logb 𝑁))) = (2↑(⌊‘(2 logb 𝑁)))) |
21 | 13, 16, 20 | 3eqtr4d 2785 | . . 3 ⊢ (𝑁 ∈ ℕ → (2↑((#b‘𝑁) − 1)) = (2↑𝑐(⌊‘(2 logb 𝑁)))) |
22 | flle 13836 | . . . . . 6 ⊢ ((2 logb 𝑁) ∈ ℝ → (⌊‘(2 logb 𝑁)) ≤ (2 logb 𝑁)) | |
23 | 8, 22 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (⌊‘(2 logb 𝑁)) ≤ (2 logb 𝑁)) |
24 | 2re 12338 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
25 | 24 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℝ) |
26 | 1lt2 12435 | . . . . . . 7 ⊢ 1 < 2 | |
27 | 26 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 1 < 2) |
28 | 9 | zred 12720 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (⌊‘(2 logb 𝑁)) ∈ ℝ) |
29 | 25, 27, 28, 8 | cxpled 26777 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((⌊‘(2 logb 𝑁)) ≤ (2 logb 𝑁) ↔ (2↑𝑐(⌊‘(2 logb 𝑁))) ≤ (2↑𝑐(2 logb 𝑁)))) |
30 | 23, 29 | mpbid 232 | . . . 4 ⊢ (𝑁 ∈ ℕ → (2↑𝑐(⌊‘(2 logb 𝑁))) ≤ (2↑𝑐(2 logb 𝑁))) |
31 | 2cn 12339 | . . . . . 6 ⊢ 2 ∈ ℂ | |
32 | eldifpr 4663 | . . . . . 6 ⊢ (2 ∈ (ℂ ∖ {0, 1}) ↔ (2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1)) | |
33 | 31, 18, 5, 32 | mpbir3an 1340 | . . . . 5 ⊢ 2 ∈ (ℂ ∖ {0, 1}) |
34 | nncn 12272 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
35 | nnne0 12298 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) | |
36 | eldifsn 4791 | . . . . . 6 ⊢ (𝑁 ∈ (ℂ ∖ {0}) ↔ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) | |
37 | 34, 35, 36 | sylanbrc 583 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ (ℂ ∖ {0})) |
38 | cxplogb 26844 | . . . . 5 ⊢ ((2 ∈ (ℂ ∖ {0, 1}) ∧ 𝑁 ∈ (ℂ ∖ {0})) → (2↑𝑐(2 logb 𝑁)) = 𝑁) | |
39 | 33, 37, 38 | sylancr 587 | . . . 4 ⊢ (𝑁 ∈ ℕ → (2↑𝑐(2 logb 𝑁)) = 𝑁) |
40 | 30, 39 | breqtrd 5174 | . . 3 ⊢ (𝑁 ∈ ℕ → (2↑𝑐(⌊‘(2 logb 𝑁))) ≤ 𝑁) |
41 | 21, 40 | eqbrtrd 5170 | . 2 ⊢ (𝑁 ∈ ℕ → (2↑((#b‘𝑁) − 1)) ≤ 𝑁) |
42 | flltp1 13837 | . . . . . 6 ⊢ ((2 logb 𝑁) ∈ ℝ → (2 logb 𝑁) < ((⌊‘(2 logb 𝑁)) + 1)) | |
43 | 8, 42 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (2 logb 𝑁) < ((⌊‘(2 logb 𝑁)) + 1)) |
44 | 9 | peano2zd 12723 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → ((⌊‘(2 logb 𝑁)) + 1) ∈ ℤ) |
45 | 44 | zred 12720 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ((⌊‘(2 logb 𝑁)) + 1) ∈ ℝ) |
46 | 25, 27, 8, 45 | cxpltd 26776 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((2 logb 𝑁) < ((⌊‘(2 logb 𝑁)) + 1) ↔ (2↑𝑐(2 logb 𝑁)) < (2↑𝑐((⌊‘(2 logb 𝑁)) + 1)))) |
47 | 43, 46 | mpbid 232 | . . . 4 ⊢ (𝑁 ∈ ℕ → (2↑𝑐(2 logb 𝑁)) < (2↑𝑐((⌊‘(2 logb 𝑁)) + 1))) |
48 | 17, 19, 44 | cxpexpzd 26768 | . . . 4 ⊢ (𝑁 ∈ ℕ → (2↑𝑐((⌊‘(2 logb 𝑁)) + 1)) = (2↑((⌊‘(2 logb 𝑁)) + 1))) |
49 | 47, 39, 48 | 3brtr3d 5179 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 < (2↑((⌊‘(2 logb 𝑁)) + 1))) |
50 | 14 | oveq2d 7447 | . . 3 ⊢ (𝑁 ∈ ℕ → (2↑(#b‘𝑁)) = (2↑((⌊‘(2 logb 𝑁)) + 1))) |
51 | 49, 50 | breqtrrd 5176 | . 2 ⊢ (𝑁 ∈ ℕ → 𝑁 < (2↑(#b‘𝑁))) |
52 | 41, 51 | jca 511 | 1 ⊢ (𝑁 ∈ ℕ → ((2↑((#b‘𝑁) − 1)) ≤ 𝑁 ∧ 𝑁 < (2↑(#b‘𝑁)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∖ cdif 3960 {csn 4631 {cpr 4633 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 ℝcr 11152 0cc0 11153 1c1 11154 + caddc 11156 < clt 11293 ≤ cle 11294 − cmin 11490 ℕcn 12264 2c2 12319 ℝ+crp 13032 ⌊cfl 13827 ↑cexp 14099 ↑𝑐ccxp 26612 logb clogb 26822 #bcblen 48419 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-fi 9449 df-sup 9480 df-inf 9481 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-ioo 13388 df-ioc 13389 df-ico 13390 df-icc 13391 df-fz 13545 df-fzo 13692 df-fl 13829 df-mod 13907 df-seq 14040 df-exp 14100 df-fac 14310 df-bc 14339 df-hash 14367 df-shft 15103 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-limsup 15504 df-clim 15521 df-rlim 15522 df-sum 15720 df-ef 16100 df-sin 16102 df-cos 16103 df-pi 16105 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-rest 17469 df-topn 17470 df-0g 17488 df-gsum 17489 df-topgen 17490 df-pt 17491 df-prds 17494 df-xrs 17549 df-qtop 17554 df-imas 17555 df-xps 17557 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-mulg 19099 df-cntz 19348 df-cmn 19815 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-fbas 21379 df-fg 21380 df-cnfld 21383 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-cld 23043 df-ntr 23044 df-cls 23045 df-nei 23122 df-lp 23160 df-perf 23161 df-cn 23251 df-cnp 23252 df-haus 23339 df-tx 23586 df-hmeo 23779 df-fil 23870 df-fm 23962 df-flim 23963 df-flf 23964 df-xms 24346 df-ms 24347 df-tms 24348 df-cncf 24918 df-limc 25916 df-dv 25917 df-log 26613 df-cxp 26614 df-logb 26823 df-blen 48420 |
This theorem is referenced by: nnpw2blenfzo 48431 nnpw2pmod 48433 |
Copyright terms: Public domain | W3C validator |