![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nnpw2blen | Structured version Visualization version GIF version |
Description: A positive integer is between 2 to the power of its binary length minus 1 and 2 to the power of its binary length. (Contributed by AV, 31-May-2020.) |
Ref | Expression |
---|---|
nnpw2blen | ⊢ (𝑁 ∈ ℕ → ((2↑((#b‘𝑁) − 1)) ≤ 𝑁 ∧ 𝑁 < (2↑(#b‘𝑁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2rp 13062 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ+ | |
2 | 1 | a1i 11 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℝ+) |
3 | nnrp 13068 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+) | |
4 | 1ne2 12501 | . . . . . . . . . . 11 ⊢ 1 ≠ 2 | |
5 | 4 | necomi 3001 | . . . . . . . . . 10 ⊢ 2 ≠ 1 |
6 | 5 | a1i 11 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 2 ≠ 1) |
7 | relogbcl 26834 | . . . . . . . . 9 ⊢ ((2 ∈ ℝ+ ∧ 𝑁 ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb 𝑁) ∈ ℝ) | |
8 | 2, 3, 6, 7 | syl3anc 1371 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (2 logb 𝑁) ∈ ℝ) |
9 | 8 | flcld 13849 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (⌊‘(2 logb 𝑁)) ∈ ℤ) |
10 | 9 | zcnd 12748 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (⌊‘(2 logb 𝑁)) ∈ ℂ) |
11 | pncan1 11714 | . . . . . 6 ⊢ ((⌊‘(2 logb 𝑁)) ∈ ℂ → (((⌊‘(2 logb 𝑁)) + 1) − 1) = (⌊‘(2 logb 𝑁))) | |
12 | 10, 11 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (((⌊‘(2 logb 𝑁)) + 1) − 1) = (⌊‘(2 logb 𝑁))) |
13 | 12 | oveq2d 7464 | . . . 4 ⊢ (𝑁 ∈ ℕ → (2↑(((⌊‘(2 logb 𝑁)) + 1) − 1)) = (2↑(⌊‘(2 logb 𝑁)))) |
14 | blennn 48309 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (#b‘𝑁) = ((⌊‘(2 logb 𝑁)) + 1)) | |
15 | 14 | oveq1d 7463 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((#b‘𝑁) − 1) = (((⌊‘(2 logb 𝑁)) + 1) − 1)) |
16 | 15 | oveq2d 7464 | . . . 4 ⊢ (𝑁 ∈ ℕ → (2↑((#b‘𝑁) − 1)) = (2↑(((⌊‘(2 logb 𝑁)) + 1) − 1))) |
17 | 2cnd 12371 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℂ) | |
18 | 2ne0 12397 | . . . . . 6 ⊢ 2 ≠ 0 | |
19 | 18 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 2 ≠ 0) |
20 | 17, 19, 9 | cxpexpzd 26771 | . . . 4 ⊢ (𝑁 ∈ ℕ → (2↑𝑐(⌊‘(2 logb 𝑁))) = (2↑(⌊‘(2 logb 𝑁)))) |
21 | 13, 16, 20 | 3eqtr4d 2790 | . . 3 ⊢ (𝑁 ∈ ℕ → (2↑((#b‘𝑁) − 1)) = (2↑𝑐(⌊‘(2 logb 𝑁)))) |
22 | flle 13850 | . . . . . 6 ⊢ ((2 logb 𝑁) ∈ ℝ → (⌊‘(2 logb 𝑁)) ≤ (2 logb 𝑁)) | |
23 | 8, 22 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (⌊‘(2 logb 𝑁)) ≤ (2 logb 𝑁)) |
24 | 2re 12367 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
25 | 24 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℝ) |
26 | 1lt2 12464 | . . . . . . 7 ⊢ 1 < 2 | |
27 | 26 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 1 < 2) |
28 | 9 | zred 12747 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (⌊‘(2 logb 𝑁)) ∈ ℝ) |
29 | 25, 27, 28, 8 | cxpled 26780 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((⌊‘(2 logb 𝑁)) ≤ (2 logb 𝑁) ↔ (2↑𝑐(⌊‘(2 logb 𝑁))) ≤ (2↑𝑐(2 logb 𝑁)))) |
30 | 23, 29 | mpbid 232 | . . . 4 ⊢ (𝑁 ∈ ℕ → (2↑𝑐(⌊‘(2 logb 𝑁))) ≤ (2↑𝑐(2 logb 𝑁))) |
31 | 2cn 12368 | . . . . . 6 ⊢ 2 ∈ ℂ | |
32 | eldifpr 4680 | . . . . . 6 ⊢ (2 ∈ (ℂ ∖ {0, 1}) ↔ (2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1)) | |
33 | 31, 18, 5, 32 | mpbir3an 1341 | . . . . 5 ⊢ 2 ∈ (ℂ ∖ {0, 1}) |
34 | nncn 12301 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
35 | nnne0 12327 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) | |
36 | eldifsn 4811 | . . . . . 6 ⊢ (𝑁 ∈ (ℂ ∖ {0}) ↔ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) | |
37 | 34, 35, 36 | sylanbrc 582 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ (ℂ ∖ {0})) |
38 | cxplogb 26847 | . . . . 5 ⊢ ((2 ∈ (ℂ ∖ {0, 1}) ∧ 𝑁 ∈ (ℂ ∖ {0})) → (2↑𝑐(2 logb 𝑁)) = 𝑁) | |
39 | 33, 37, 38 | sylancr 586 | . . . 4 ⊢ (𝑁 ∈ ℕ → (2↑𝑐(2 logb 𝑁)) = 𝑁) |
40 | 30, 39 | breqtrd 5192 | . . 3 ⊢ (𝑁 ∈ ℕ → (2↑𝑐(⌊‘(2 logb 𝑁))) ≤ 𝑁) |
41 | 21, 40 | eqbrtrd 5188 | . 2 ⊢ (𝑁 ∈ ℕ → (2↑((#b‘𝑁) − 1)) ≤ 𝑁) |
42 | flltp1 13851 | . . . . . 6 ⊢ ((2 logb 𝑁) ∈ ℝ → (2 logb 𝑁) < ((⌊‘(2 logb 𝑁)) + 1)) | |
43 | 8, 42 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (2 logb 𝑁) < ((⌊‘(2 logb 𝑁)) + 1)) |
44 | 9 | peano2zd 12750 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → ((⌊‘(2 logb 𝑁)) + 1) ∈ ℤ) |
45 | 44 | zred 12747 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ((⌊‘(2 logb 𝑁)) + 1) ∈ ℝ) |
46 | 25, 27, 8, 45 | cxpltd 26779 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((2 logb 𝑁) < ((⌊‘(2 logb 𝑁)) + 1) ↔ (2↑𝑐(2 logb 𝑁)) < (2↑𝑐((⌊‘(2 logb 𝑁)) + 1)))) |
47 | 43, 46 | mpbid 232 | . . . 4 ⊢ (𝑁 ∈ ℕ → (2↑𝑐(2 logb 𝑁)) < (2↑𝑐((⌊‘(2 logb 𝑁)) + 1))) |
48 | 17, 19, 44 | cxpexpzd 26771 | . . . 4 ⊢ (𝑁 ∈ ℕ → (2↑𝑐((⌊‘(2 logb 𝑁)) + 1)) = (2↑((⌊‘(2 logb 𝑁)) + 1))) |
49 | 47, 39, 48 | 3brtr3d 5197 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 < (2↑((⌊‘(2 logb 𝑁)) + 1))) |
50 | 14 | oveq2d 7464 | . . 3 ⊢ (𝑁 ∈ ℕ → (2↑(#b‘𝑁)) = (2↑((⌊‘(2 logb 𝑁)) + 1))) |
51 | 49, 50 | breqtrrd 5194 | . 2 ⊢ (𝑁 ∈ ℕ → 𝑁 < (2↑(#b‘𝑁))) |
52 | 41, 51 | jca 511 | 1 ⊢ (𝑁 ∈ ℕ → ((2↑((#b‘𝑁) − 1)) ≤ 𝑁 ∧ 𝑁 < (2↑(#b‘𝑁)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∖ cdif 3973 {csn 4648 {cpr 4650 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 ℝcr 11183 0cc0 11184 1c1 11185 + caddc 11187 < clt 11324 ≤ cle 11325 − cmin 11520 ℕcn 12293 2c2 12348 ℝ+crp 13057 ⌊cfl 13841 ↑cexp 14112 ↑𝑐ccxp 26615 logb clogb 26825 #bcblen 48303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ioc 13412 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-fac 14323 df-bc 14352 df-hash 14380 df-shft 15116 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-limsup 15517 df-clim 15534 df-rlim 15535 df-sum 15735 df-ef 16115 df-sin 16117 df-cos 16118 df-pi 16120 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-fbas 21384 df-fg 21385 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-lp 23165 df-perf 23166 df-cn 23256 df-cnp 23257 df-haus 23344 df-tx 23591 df-hmeo 23784 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 df-xms 24351 df-ms 24352 df-tms 24353 df-cncf 24923 df-limc 25921 df-dv 25922 df-log 26616 df-cxp 26617 df-logb 26826 df-blen 48304 |
This theorem is referenced by: nnpw2blenfzo 48315 nnpw2pmod 48317 |
Copyright terms: Public domain | W3C validator |