|   | Mathbox for Alexander van der Vekens | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nnpw2blen | Structured version Visualization version GIF version | ||
| Description: A positive integer is between 2 to the power of its binary length minus 1 and 2 to the power of its binary length. (Contributed by AV, 31-May-2020.) | 
| Ref | Expression | 
|---|---|
| nnpw2blen | ⊢ (𝑁 ∈ ℕ → ((2↑((#b‘𝑁) − 1)) ≤ 𝑁 ∧ 𝑁 < (2↑(#b‘𝑁)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2rp 13039 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ+ | |
| 2 | 1 | a1i 11 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℝ+) | 
| 3 | nnrp 13046 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+) | |
| 4 | 1ne2 12474 | . . . . . . . . . . 11 ⊢ 1 ≠ 2 | |
| 5 | 4 | necomi 2995 | . . . . . . . . . 10 ⊢ 2 ≠ 1 | 
| 6 | 5 | a1i 11 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 2 ≠ 1) | 
| 7 | relogbcl 26816 | . . . . . . . . 9 ⊢ ((2 ∈ ℝ+ ∧ 𝑁 ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb 𝑁) ∈ ℝ) | |
| 8 | 2, 3, 6, 7 | syl3anc 1373 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (2 logb 𝑁) ∈ ℝ) | 
| 9 | 8 | flcld 13838 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (⌊‘(2 logb 𝑁)) ∈ ℤ) | 
| 10 | 9 | zcnd 12723 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (⌊‘(2 logb 𝑁)) ∈ ℂ) | 
| 11 | pncan1 11687 | . . . . . 6 ⊢ ((⌊‘(2 logb 𝑁)) ∈ ℂ → (((⌊‘(2 logb 𝑁)) + 1) − 1) = (⌊‘(2 logb 𝑁))) | |
| 12 | 10, 11 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (((⌊‘(2 logb 𝑁)) + 1) − 1) = (⌊‘(2 logb 𝑁))) | 
| 13 | 12 | oveq2d 7447 | . . . 4 ⊢ (𝑁 ∈ ℕ → (2↑(((⌊‘(2 logb 𝑁)) + 1) − 1)) = (2↑(⌊‘(2 logb 𝑁)))) | 
| 14 | blennn 48496 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (#b‘𝑁) = ((⌊‘(2 logb 𝑁)) + 1)) | |
| 15 | 14 | oveq1d 7446 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((#b‘𝑁) − 1) = (((⌊‘(2 logb 𝑁)) + 1) − 1)) | 
| 16 | 15 | oveq2d 7447 | . . . 4 ⊢ (𝑁 ∈ ℕ → (2↑((#b‘𝑁) − 1)) = (2↑(((⌊‘(2 logb 𝑁)) + 1) − 1))) | 
| 17 | 2cnd 12344 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℂ) | |
| 18 | 2ne0 12370 | . . . . . 6 ⊢ 2 ≠ 0 | |
| 19 | 18 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 2 ≠ 0) | 
| 20 | 17, 19, 9 | cxpexpzd 26753 | . . . 4 ⊢ (𝑁 ∈ ℕ → (2↑𝑐(⌊‘(2 logb 𝑁))) = (2↑(⌊‘(2 logb 𝑁)))) | 
| 21 | 13, 16, 20 | 3eqtr4d 2787 | . . 3 ⊢ (𝑁 ∈ ℕ → (2↑((#b‘𝑁) − 1)) = (2↑𝑐(⌊‘(2 logb 𝑁)))) | 
| 22 | flle 13839 | . . . . . 6 ⊢ ((2 logb 𝑁) ∈ ℝ → (⌊‘(2 logb 𝑁)) ≤ (2 logb 𝑁)) | |
| 23 | 8, 22 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (⌊‘(2 logb 𝑁)) ≤ (2 logb 𝑁)) | 
| 24 | 2re 12340 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
| 25 | 24 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℝ) | 
| 26 | 1lt2 12437 | . . . . . . 7 ⊢ 1 < 2 | |
| 27 | 26 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 1 < 2) | 
| 28 | 9 | zred 12722 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (⌊‘(2 logb 𝑁)) ∈ ℝ) | 
| 29 | 25, 27, 28, 8 | cxpled 26762 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((⌊‘(2 logb 𝑁)) ≤ (2 logb 𝑁) ↔ (2↑𝑐(⌊‘(2 logb 𝑁))) ≤ (2↑𝑐(2 logb 𝑁)))) | 
| 30 | 23, 29 | mpbid 232 | . . . 4 ⊢ (𝑁 ∈ ℕ → (2↑𝑐(⌊‘(2 logb 𝑁))) ≤ (2↑𝑐(2 logb 𝑁))) | 
| 31 | 2cn 12341 | . . . . . 6 ⊢ 2 ∈ ℂ | |
| 32 | eldifpr 4658 | . . . . . 6 ⊢ (2 ∈ (ℂ ∖ {0, 1}) ↔ (2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1)) | |
| 33 | 31, 18, 5, 32 | mpbir3an 1342 | . . . . 5 ⊢ 2 ∈ (ℂ ∖ {0, 1}) | 
| 34 | nncn 12274 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
| 35 | nnne0 12300 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) | |
| 36 | eldifsn 4786 | . . . . . 6 ⊢ (𝑁 ∈ (ℂ ∖ {0}) ↔ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) | |
| 37 | 34, 35, 36 | sylanbrc 583 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ (ℂ ∖ {0})) | 
| 38 | cxplogb 26829 | . . . . 5 ⊢ ((2 ∈ (ℂ ∖ {0, 1}) ∧ 𝑁 ∈ (ℂ ∖ {0})) → (2↑𝑐(2 logb 𝑁)) = 𝑁) | |
| 39 | 33, 37, 38 | sylancr 587 | . . . 4 ⊢ (𝑁 ∈ ℕ → (2↑𝑐(2 logb 𝑁)) = 𝑁) | 
| 40 | 30, 39 | breqtrd 5169 | . . 3 ⊢ (𝑁 ∈ ℕ → (2↑𝑐(⌊‘(2 logb 𝑁))) ≤ 𝑁) | 
| 41 | 21, 40 | eqbrtrd 5165 | . 2 ⊢ (𝑁 ∈ ℕ → (2↑((#b‘𝑁) − 1)) ≤ 𝑁) | 
| 42 | flltp1 13840 | . . . . . 6 ⊢ ((2 logb 𝑁) ∈ ℝ → (2 logb 𝑁) < ((⌊‘(2 logb 𝑁)) + 1)) | |
| 43 | 8, 42 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (2 logb 𝑁) < ((⌊‘(2 logb 𝑁)) + 1)) | 
| 44 | 9 | peano2zd 12725 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → ((⌊‘(2 logb 𝑁)) + 1) ∈ ℤ) | 
| 45 | 44 | zred 12722 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ((⌊‘(2 logb 𝑁)) + 1) ∈ ℝ) | 
| 46 | 25, 27, 8, 45 | cxpltd 26761 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((2 logb 𝑁) < ((⌊‘(2 logb 𝑁)) + 1) ↔ (2↑𝑐(2 logb 𝑁)) < (2↑𝑐((⌊‘(2 logb 𝑁)) + 1)))) | 
| 47 | 43, 46 | mpbid 232 | . . . 4 ⊢ (𝑁 ∈ ℕ → (2↑𝑐(2 logb 𝑁)) < (2↑𝑐((⌊‘(2 logb 𝑁)) + 1))) | 
| 48 | 17, 19, 44 | cxpexpzd 26753 | . . . 4 ⊢ (𝑁 ∈ ℕ → (2↑𝑐((⌊‘(2 logb 𝑁)) + 1)) = (2↑((⌊‘(2 logb 𝑁)) + 1))) | 
| 49 | 47, 39, 48 | 3brtr3d 5174 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 < (2↑((⌊‘(2 logb 𝑁)) + 1))) | 
| 50 | 14 | oveq2d 7447 | . . 3 ⊢ (𝑁 ∈ ℕ → (2↑(#b‘𝑁)) = (2↑((⌊‘(2 logb 𝑁)) + 1))) | 
| 51 | 49, 50 | breqtrrd 5171 | . 2 ⊢ (𝑁 ∈ ℕ → 𝑁 < (2↑(#b‘𝑁))) | 
| 52 | 41, 51 | jca 511 | 1 ⊢ (𝑁 ∈ ℕ → ((2↑((#b‘𝑁) − 1)) ≤ 𝑁 ∧ 𝑁 < (2↑(#b‘𝑁)))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∖ cdif 3948 {csn 4626 {cpr 4628 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 ℂcc 11153 ℝcr 11154 0cc0 11155 1c1 11156 + caddc 11158 < clt 11295 ≤ cle 11296 − cmin 11492 ℕcn 12266 2c2 12321 ℝ+crp 13034 ⌊cfl 13830 ↑cexp 14102 ↑𝑐ccxp 26597 logb clogb 26807 #bcblen 48490 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 ax-addf 11234 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-pm 8869 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-fi 9451 df-sup 9482 df-inf 9483 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-q 12991 df-rp 13035 df-xneg 13154 df-xadd 13155 df-xmul 13156 df-ioo 13391 df-ioc 13392 df-ico 13393 df-icc 13394 df-fz 13548 df-fzo 13695 df-fl 13832 df-mod 13910 df-seq 14043 df-exp 14103 df-fac 14313 df-bc 14342 df-hash 14370 df-shft 15106 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-limsup 15507 df-clim 15524 df-rlim 15525 df-sum 15723 df-ef 16103 df-sin 16105 df-cos 16106 df-pi 16108 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-hom 17321 df-cco 17322 df-rest 17467 df-topn 17468 df-0g 17486 df-gsum 17487 df-topgen 17488 df-pt 17489 df-prds 17492 df-xrs 17547 df-qtop 17552 df-imas 17553 df-xps 17555 df-mre 17629 df-mrc 17630 df-acs 17632 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-submnd 18797 df-mulg 19086 df-cntz 19335 df-cmn 19800 df-psmet 21356 df-xmet 21357 df-met 21358 df-bl 21359 df-mopn 21360 df-fbas 21361 df-fg 21362 df-cnfld 21365 df-top 22900 df-topon 22917 df-topsp 22939 df-bases 22953 df-cld 23027 df-ntr 23028 df-cls 23029 df-nei 23106 df-lp 23144 df-perf 23145 df-cn 23235 df-cnp 23236 df-haus 23323 df-tx 23570 df-hmeo 23763 df-fil 23854 df-fm 23946 df-flim 23947 df-flf 23948 df-xms 24330 df-ms 24331 df-tms 24332 df-cncf 24904 df-limc 25901 df-dv 25902 df-log 26598 df-cxp 26599 df-logb 26808 df-blen 48491 | 
| This theorem is referenced by: nnpw2blenfzo 48502 nnpw2pmod 48504 | 
| Copyright terms: Public domain | W3C validator |