Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnpw2blen Structured version   Visualization version   GIF version

Theorem nnpw2blen 45966
Description: A positive integer is between 2 to the power of its binary length minus 1 and 2 to the power of its binary length. (Contributed by AV, 31-May-2020.)
Assertion
Ref Expression
nnpw2blen (𝑁 ∈ ℕ → ((2↑((#b𝑁) − 1)) ≤ 𝑁𝑁 < (2↑(#b𝑁))))

Proof of Theorem nnpw2blen
StepHypRef Expression
1 2rp 12763 . . . . . . . . . 10 2 ∈ ℝ+
21a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → 2 ∈ ℝ+)
3 nnrp 12769 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
4 1ne2 12209 . . . . . . . . . . 11 1 ≠ 2
54necomi 2993 . . . . . . . . . 10 2 ≠ 1
65a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → 2 ≠ 1)
7 relogbcl 25951 . . . . . . . . 9 ((2 ∈ ℝ+𝑁 ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb 𝑁) ∈ ℝ)
82, 3, 6, 7syl3anc 1369 . . . . . . . 8 (𝑁 ∈ ℕ → (2 logb 𝑁) ∈ ℝ)
98flcld 13546 . . . . . . 7 (𝑁 ∈ ℕ → (⌊‘(2 logb 𝑁)) ∈ ℤ)
109zcnd 12455 . . . . . 6 (𝑁 ∈ ℕ → (⌊‘(2 logb 𝑁)) ∈ ℂ)
11 pncan1 11427 . . . . . 6 ((⌊‘(2 logb 𝑁)) ∈ ℂ → (((⌊‘(2 logb 𝑁)) + 1) − 1) = (⌊‘(2 logb 𝑁)))
1210, 11syl 17 . . . . 5 (𝑁 ∈ ℕ → (((⌊‘(2 logb 𝑁)) + 1) − 1) = (⌊‘(2 logb 𝑁)))
1312oveq2d 7311 . . . 4 (𝑁 ∈ ℕ → (2↑(((⌊‘(2 logb 𝑁)) + 1) − 1)) = (2↑(⌊‘(2 logb 𝑁))))
14 blennn 45961 . . . . . 6 (𝑁 ∈ ℕ → (#b𝑁) = ((⌊‘(2 logb 𝑁)) + 1))
1514oveq1d 7310 . . . . 5 (𝑁 ∈ ℕ → ((#b𝑁) − 1) = (((⌊‘(2 logb 𝑁)) + 1) − 1))
1615oveq2d 7311 . . . 4 (𝑁 ∈ ℕ → (2↑((#b𝑁) − 1)) = (2↑(((⌊‘(2 logb 𝑁)) + 1) − 1)))
17 2cnd 12079 . . . . 5 (𝑁 ∈ ℕ → 2 ∈ ℂ)
18 2ne0 12105 . . . . . 6 2 ≠ 0
1918a1i 11 . . . . 5 (𝑁 ∈ ℕ → 2 ≠ 0)
2017, 19, 9cxpexpzd 25894 . . . 4 (𝑁 ∈ ℕ → (2↑𝑐(⌊‘(2 logb 𝑁))) = (2↑(⌊‘(2 logb 𝑁))))
2113, 16, 203eqtr4d 2783 . . 3 (𝑁 ∈ ℕ → (2↑((#b𝑁) − 1)) = (2↑𝑐(⌊‘(2 logb 𝑁))))
22 flle 13547 . . . . . 6 ((2 logb 𝑁) ∈ ℝ → (⌊‘(2 logb 𝑁)) ≤ (2 logb 𝑁))
238, 22syl 17 . . . . 5 (𝑁 ∈ ℕ → (⌊‘(2 logb 𝑁)) ≤ (2 logb 𝑁))
24 2re 12075 . . . . . . 7 2 ∈ ℝ
2524a1i 11 . . . . . 6 (𝑁 ∈ ℕ → 2 ∈ ℝ)
26 1lt2 12172 . . . . . . 7 1 < 2
2726a1i 11 . . . . . 6 (𝑁 ∈ ℕ → 1 < 2)
289zred 12454 . . . . . 6 (𝑁 ∈ ℕ → (⌊‘(2 logb 𝑁)) ∈ ℝ)
2925, 27, 28, 8cxpled 25903 . . . . 5 (𝑁 ∈ ℕ → ((⌊‘(2 logb 𝑁)) ≤ (2 logb 𝑁) ↔ (2↑𝑐(⌊‘(2 logb 𝑁))) ≤ (2↑𝑐(2 logb 𝑁))))
3023, 29mpbid 231 . . . 4 (𝑁 ∈ ℕ → (2↑𝑐(⌊‘(2 logb 𝑁))) ≤ (2↑𝑐(2 logb 𝑁)))
31 2cn 12076 . . . . . 6 2 ∈ ℂ
32 eldifpr 4596 . . . . . 6 (2 ∈ (ℂ ∖ {0, 1}) ↔ (2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1))
3331, 18, 5, 32mpbir3an 1339 . . . . 5 2 ∈ (ℂ ∖ {0, 1})
34 nncn 12009 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
35 nnne0 12035 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
36 eldifsn 4723 . . . . . 6 (𝑁 ∈ (ℂ ∖ {0}) ↔ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
3734, 35, 36sylanbrc 582 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ (ℂ ∖ {0}))
38 cxplogb 25964 . . . . 5 ((2 ∈ (ℂ ∖ {0, 1}) ∧ 𝑁 ∈ (ℂ ∖ {0})) → (2↑𝑐(2 logb 𝑁)) = 𝑁)
3933, 37, 38sylancr 586 . . . 4 (𝑁 ∈ ℕ → (2↑𝑐(2 logb 𝑁)) = 𝑁)
4030, 39breqtrd 5103 . . 3 (𝑁 ∈ ℕ → (2↑𝑐(⌊‘(2 logb 𝑁))) ≤ 𝑁)
4121, 40eqbrtrd 5099 . 2 (𝑁 ∈ ℕ → (2↑((#b𝑁) − 1)) ≤ 𝑁)
42 flltp1 13548 . . . . . 6 ((2 logb 𝑁) ∈ ℝ → (2 logb 𝑁) < ((⌊‘(2 logb 𝑁)) + 1))
438, 42syl 17 . . . . 5 (𝑁 ∈ ℕ → (2 logb 𝑁) < ((⌊‘(2 logb 𝑁)) + 1))
449peano2zd 12457 . . . . . . 7 (𝑁 ∈ ℕ → ((⌊‘(2 logb 𝑁)) + 1) ∈ ℤ)
4544zred 12454 . . . . . 6 (𝑁 ∈ ℕ → ((⌊‘(2 logb 𝑁)) + 1) ∈ ℝ)
4625, 27, 8, 45cxpltd 25902 . . . . 5 (𝑁 ∈ ℕ → ((2 logb 𝑁) < ((⌊‘(2 logb 𝑁)) + 1) ↔ (2↑𝑐(2 logb 𝑁)) < (2↑𝑐((⌊‘(2 logb 𝑁)) + 1))))
4743, 46mpbid 231 . . . 4 (𝑁 ∈ ℕ → (2↑𝑐(2 logb 𝑁)) < (2↑𝑐((⌊‘(2 logb 𝑁)) + 1)))
4817, 19, 44cxpexpzd 25894 . . . 4 (𝑁 ∈ ℕ → (2↑𝑐((⌊‘(2 logb 𝑁)) + 1)) = (2↑((⌊‘(2 logb 𝑁)) + 1)))
4947, 39, 483brtr3d 5108 . . 3 (𝑁 ∈ ℕ → 𝑁 < (2↑((⌊‘(2 logb 𝑁)) + 1)))
5014oveq2d 7311 . . 3 (𝑁 ∈ ℕ → (2↑(#b𝑁)) = (2↑((⌊‘(2 logb 𝑁)) + 1)))
5149, 50breqtrrd 5105 . 2 (𝑁 ∈ ℕ → 𝑁 < (2↑(#b𝑁)))
5241, 51jca 511 1 (𝑁 ∈ ℕ → ((2↑((#b𝑁) − 1)) ≤ 𝑁𝑁 < (2↑(#b𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2101  wne 2938  cdif 3886  {csn 4564  {cpr 4566   class class class wbr 5077  cfv 6447  (class class class)co 7295  cc 10897  cr 10898  0cc0 10899  1c1 10900   + caddc 10902   < clt 11037  cle 11038  cmin 11233  cn 12001  2c2 12056  +crp 12758  cfl 13538  cexp 13810  𝑐ccxp 25739   logb clogb 25942  #bcblen 45955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-rep 5212  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608  ax-inf2 9427  ax-cnex 10955  ax-resscn 10956  ax-1cn 10957  ax-icn 10958  ax-addcl 10959  ax-addrcl 10960  ax-mulcl 10961  ax-mulrcl 10962  ax-mulcom 10963  ax-addass 10964  ax-mulass 10965  ax-distr 10966  ax-i2m1 10967  ax-1ne0 10968  ax-1rid 10969  ax-rnegex 10970  ax-rrecex 10971  ax-cnre 10972  ax-pre-lttri 10973  ax-pre-lttrn 10974  ax-pre-ltadd 10975  ax-pre-mulgt0 10976  ax-pre-sup 10977  ax-addf 10978  ax-mulf 10979
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3222  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4842  df-int 4883  df-iun 4929  df-iin 4930  df-br 5078  df-opab 5140  df-mpt 5161  df-tr 5195  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-se 5547  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-isom 6456  df-riota 7252  df-ov 7298  df-oprab 7299  df-mpo 7300  df-of 7553  df-om 7733  df-1st 7851  df-2nd 7852  df-supp 7998  df-frecs 8117  df-wrecs 8148  df-recs 8222  df-rdg 8261  df-1o 8317  df-2o 8318  df-er 8518  df-map 8637  df-pm 8638  df-ixp 8706  df-en 8754  df-dom 8755  df-sdom 8756  df-fin 8757  df-fsupp 9157  df-fi 9198  df-sup 9229  df-inf 9230  df-oi 9297  df-card 9725  df-pnf 11039  df-mnf 11040  df-xr 11041  df-ltxr 11042  df-le 11043  df-sub 11235  df-neg 11236  df-div 11661  df-nn 12002  df-2 12064  df-3 12065  df-4 12066  df-5 12067  df-6 12068  df-7 12069  df-8 12070  df-9 12071  df-n0 12262  df-z 12348  df-dec 12466  df-uz 12611  df-q 12717  df-rp 12759  df-xneg 12876  df-xadd 12877  df-xmul 12878  df-ioo 13111  df-ioc 13112  df-ico 13113  df-icc 13114  df-fz 13268  df-fzo 13411  df-fl 13540  df-mod 13618  df-seq 13750  df-exp 13811  df-fac 14016  df-bc 14045  df-hash 14073  df-shft 14806  df-cj 14838  df-re 14839  df-im 14840  df-sqrt 14974  df-abs 14975  df-limsup 15208  df-clim 15225  df-rlim 15226  df-sum 15426  df-ef 15805  df-sin 15807  df-cos 15808  df-pi 15810  df-struct 16876  df-sets 16893  df-slot 16911  df-ndx 16923  df-base 16941  df-ress 16970  df-plusg 17003  df-mulr 17004  df-starv 17005  df-sca 17006  df-vsca 17007  df-ip 17008  df-tset 17009  df-ple 17010  df-ds 17012  df-unif 17013  df-hom 17014  df-cco 17015  df-rest 17161  df-topn 17162  df-0g 17180  df-gsum 17181  df-topgen 17182  df-pt 17183  df-prds 17186  df-xrs 17241  df-qtop 17246  df-imas 17247  df-xps 17249  df-mre 17323  df-mrc 17324  df-acs 17326  df-mgm 18354  df-sgrp 18403  df-mnd 18414  df-submnd 18459  df-mulg 18729  df-cntz 18951  df-cmn 19416  df-psmet 20617  df-xmet 20618  df-met 20619  df-bl 20620  df-mopn 20621  df-fbas 20622  df-fg 20623  df-cnfld 20626  df-top 22071  df-topon 22088  df-topsp 22110  df-bases 22124  df-cld 22198  df-ntr 22199  df-cls 22200  df-nei 22277  df-lp 22315  df-perf 22316  df-cn 22406  df-cnp 22407  df-haus 22494  df-tx 22741  df-hmeo 22934  df-fil 23025  df-fm 23117  df-flim 23118  df-flf 23119  df-xms 23501  df-ms 23502  df-tms 23503  df-cncf 24069  df-limc 25058  df-dv 25059  df-log 25740  df-cxp 25741  df-logb 25943  df-blen 45956
This theorem is referenced by:  nnpw2blenfzo  45967  nnpw2pmod  45969
  Copyright terms: Public domain W3C validator