| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvrelqseqdisj2 | Structured version Visualization version GIF version | ||
| Description: Implication of eqvreldisj2 38817, lemma for The Main Theorem of Equivalences mainer 38826. (Contributed by Peter Mazsa, 23-Sep-2021.) |
| Ref | Expression |
|---|---|
| eqvrelqseqdisj2 | ⊢ (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → ElDisj 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvreldisj2 38817 | . . 3 ⊢ ( EqvRel 𝑅 → ElDisj (𝐵 / 𝑅)) | |
| 2 | 1 | adantr 480 | . 2 ⊢ (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → ElDisj (𝐵 / 𝑅)) |
| 3 | eldisjeq 38733 | . . 3 ⊢ ((𝐵 / 𝑅) = 𝐴 → ( ElDisj (𝐵 / 𝑅) ↔ ElDisj 𝐴)) | |
| 4 | 3 | adantl 481 | . 2 ⊢ (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → ( ElDisj (𝐵 / 𝑅) ↔ ElDisj 𝐴)) |
| 5 | 2, 4 | mpbid 232 | 1 ⊢ (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → ElDisj 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 / cqs 8670 EqvRel weqvrel 38186 ElDisj weldisj 38205 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-eprel 5538 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ec 8673 df-qs 8677 df-coss 38402 df-refrel 38503 df-cnvrefrel 38518 df-symrel 38535 df-trrel 38565 df-eqvrel 38576 df-funALTV 38674 df-disjALTV 38697 df-eldisj 38699 |
| This theorem is referenced by: fences3 38822 mainer 38826 |
| Copyright terms: Public domain | W3C validator |