Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvrelqseqdisj2 Structured version   Visualization version   GIF version

Theorem eqvrelqseqdisj2 37049
Description: Implication of eqvreldisj2 37045, lemma for The Main Theorem of Equivalences mainer 37054. (Contributed by Peter Mazsa, 23-Sep-2021.)
Assertion
Ref Expression
eqvrelqseqdisj2 (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → ElDisj 𝐴)

Proof of Theorem eqvrelqseqdisj2
StepHypRef Expression
1 eqvreldisj2 37045 . . 3 ( EqvRel 𝑅 → ElDisj (𝐵 / 𝑅))
21adantr 482 . 2 (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → ElDisj (𝐵 / 𝑅))
3 eldisjeq 36961 . . 3 ((𝐵 / 𝑅) = 𝐴 → ( ElDisj (𝐵 / 𝑅) ↔ ElDisj 𝐴))
43adantl 483 . 2 (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → ( ElDisj (𝐵 / 𝑅) ↔ ElDisj 𝐴))
52, 4mpbid 231 1 (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → ElDisj 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539   / cqs 8528   EqvRel weqvrel 36404   ElDisj weldisj 36423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3339  df-rab 3341  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-id 5500  df-eprel 5506  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-ec 8531  df-qs 8535  df-coss 36631  df-refrel 36732  df-cnvrefrel 36747  df-symrel 36764  df-trrel 36794  df-eqvrel 36805  df-funALTV 36902  df-disjALTV 36925  df-eldisj 36927
This theorem is referenced by:  fences3  37050  mainer  37054
  Copyright terms: Public domain W3C validator