![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > trcoss2 | Structured version Visualization version GIF version |
Description: Equivalent expressions for the transitivity of cosets by 𝑅. (Contributed by Peter Mazsa, 4-Jul-2020.) (Revised by Peter Mazsa, 16-Oct-2021.) |
Ref | Expression |
---|---|
trcoss2 | ⊢ (∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧) ↔ ∀𝑥∀𝑧(([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ → ([𝑥]◡𝑅 ∩ [𝑧]◡𝑅) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alcom 2095 | . . 3 ⊢ (∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧) ↔ ∀𝑧∀𝑦((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) | |
2 | 1 | albii 1782 | . 2 ⊢ (∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧) ↔ ∀𝑥∀𝑧∀𝑦((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) |
3 | 19.23v 1901 | . . . 4 ⊢ (∀𝑦(𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) → ([𝑥]◡𝑅 ∩ [𝑧]◡𝑅) ≠ ∅) ↔ (∃𝑦 𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) → ([𝑥]◡𝑅 ∩ [𝑧]◡𝑅) ≠ ∅)) | |
4 | eleccossin 35168 | . . . . . . . 8 ⊢ ((𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ↔ (𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧))) | |
5 | 4 | el2v 3416 | . . . . . . 7 ⊢ (𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ↔ (𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧)) |
6 | 5 | bicomi 216 | . . . . . 6 ⊢ ((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) ↔ 𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅)) |
7 | brcoss3 35123 | . . . . . . 7 ⊢ ((𝑥 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ≀ 𝑅𝑧 ↔ ([𝑥]◡𝑅 ∩ [𝑧]◡𝑅) ≠ ∅)) | |
8 | 7 | el2v 3416 | . . . . . 6 ⊢ (𝑥 ≀ 𝑅𝑧 ↔ ([𝑥]◡𝑅 ∩ [𝑧]◡𝑅) ≠ ∅) |
9 | 6, 8 | imbi12i 343 | . . . . 5 ⊢ (((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧) ↔ (𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) → ([𝑥]◡𝑅 ∩ [𝑧]◡𝑅) ≠ ∅)) |
10 | 9 | albii 1782 | . . . 4 ⊢ (∀𝑦((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧) ↔ ∀𝑦(𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) → ([𝑥]◡𝑅 ∩ [𝑧]◡𝑅) ≠ ∅)) |
11 | n0 4190 | . . . . 5 ⊢ (([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅)) | |
12 | 11 | imbi1i 342 | . . . 4 ⊢ ((([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ → ([𝑥]◡𝑅 ∩ [𝑧]◡𝑅) ≠ ∅) ↔ (∃𝑦 𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) → ([𝑥]◡𝑅 ∩ [𝑧]◡𝑅) ≠ ∅)) |
13 | 3, 10, 12 | 3bitr4i 295 | . . 3 ⊢ (∀𝑦((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧) ↔ (([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ → ([𝑥]◡𝑅 ∩ [𝑧]◡𝑅) ≠ ∅)) |
14 | 13 | 2albii 1783 | . 2 ⊢ (∀𝑥∀𝑧∀𝑦((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧) ↔ ∀𝑥∀𝑧(([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ → ([𝑥]◡𝑅 ∩ [𝑧]◡𝑅) ≠ ∅)) |
15 | 2, 14 | bitri 267 | 1 ⊢ (∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧) ↔ ∀𝑥∀𝑧(([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ → ([𝑥]◡𝑅 ∩ [𝑧]◡𝑅) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 ∀wal 1505 ∃wex 1742 ∈ wcel 2050 ≠ wne 2961 Vcvv 3409 ∩ cin 3822 ∅c0 4172 class class class wbr 4923 ◡ccnv 5400 [cec 8081 ≀ ccoss 34897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-sep 5054 ax-nul 5061 ax-pr 5180 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-sbc 3676 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-br 4924 df-opab 4986 df-xp 5407 df-rel 5408 df-cnv 5409 df-dm 5411 df-rn 5412 df-res 5413 df-ima 5414 df-ec 8085 df-coss 35104 |
This theorem is referenced by: eqvrelcoss4 35300 |
Copyright terms: Public domain | W3C validator |