Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trcoss2 Structured version   Visualization version   GIF version

Theorem trcoss2 38426
Description: Equivalent expressions for the transitivity of cosets by 𝑅. (Contributed by Peter Mazsa, 4-Jul-2020.) (Revised by Peter Mazsa, 16-Oct-2021.)
Assertion
Ref Expression
trcoss2 (∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑥𝑧(([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ → ([𝑥]𝑅 ∩ [𝑧]𝑅) ≠ ∅))
Distinct variable groups:   𝑦,𝑅   𝑥,𝑦   𝑦,𝑧
Allowed substitution hints:   𝑅(𝑥,𝑧)

Proof of Theorem trcoss2
StepHypRef Expression
1 alcom 2158 . . 3 (∀𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑧𝑦((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
21albii 1818 . 2 (∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑥𝑧𝑦((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
3 19.23v 1941 . . . 4 (∀𝑦(𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) → ([𝑥]𝑅 ∩ [𝑧]𝑅) ≠ ∅) ↔ (∃𝑦 𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) → ([𝑥]𝑅 ∩ [𝑧]𝑅) ≠ ∅))
4 eleccossin 38425 . . . . . . . 8 ((𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ↔ (𝑥𝑅𝑦𝑦𝑅𝑧)))
54el2v 3471 . . . . . . 7 (𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ↔ (𝑥𝑅𝑦𝑦𝑅𝑧))
65bicomi 224 . . . . . 6 ((𝑥𝑅𝑦𝑦𝑅𝑧) ↔ 𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅))
7 brcoss3 38375 . . . . . . 7 ((𝑥 ∈ V ∧ 𝑧 ∈ V) → (𝑥𝑅𝑧 ↔ ([𝑥]𝑅 ∩ [𝑧]𝑅) ≠ ∅))
87el2v 3471 . . . . . 6 (𝑥𝑅𝑧 ↔ ([𝑥]𝑅 ∩ [𝑧]𝑅) ≠ ∅)
96, 8imbi12i 350 . . . . 5 (((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ (𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) → ([𝑥]𝑅 ∩ [𝑧]𝑅) ≠ ∅))
109albii 1818 . . . 4 (∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑦(𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) → ([𝑥]𝑅 ∩ [𝑧]𝑅) ≠ ∅))
11 n0 4335 . . . . 5 (([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅))
1211imbi1i 349 . . . 4 ((([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ → ([𝑥]𝑅 ∩ [𝑧]𝑅) ≠ ∅) ↔ (∃𝑦 𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) → ([𝑥]𝑅 ∩ [𝑧]𝑅) ≠ ∅))
133, 10, 123bitr4i 303 . . 3 (∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ (([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ → ([𝑥]𝑅 ∩ [𝑧]𝑅) ≠ ∅))
14132albii 1819 . 2 (∀𝑥𝑧𝑦((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑥𝑧(([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ → ([𝑥]𝑅 ∩ [𝑧]𝑅) ≠ ∅))
152, 14bitri 275 1 (∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑥𝑧(([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ → ([𝑥]𝑅 ∩ [𝑧]𝑅) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1537  wex 1778  wcel 2107  wne 2931  Vcvv 3464  cin 3932  c0 4315   class class class wbr 5125  ccnv 5666  [cec 8726  ccoss 38123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-br 5126  df-opab 5188  df-xp 5673  df-rel 5674  df-cnv 5675  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-ec 8730  df-coss 38353
This theorem is referenced by:  eqvrelcoss4  38562
  Copyright terms: Public domain W3C validator