Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trcoss2 Structured version   Visualization version   GIF version

Theorem trcoss2 36992
Description: Equivalent expressions for the transitivity of cosets by 𝑅. (Contributed by Peter Mazsa, 4-Jul-2020.) (Revised by Peter Mazsa, 16-Oct-2021.)
Assertion
Ref Expression
trcoss2 (∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑥𝑧(([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ → ([𝑥]𝑅 ∩ [𝑧]𝑅) ≠ ∅))
Distinct variable groups:   𝑦,𝑅   𝑥,𝑦   𝑦,𝑧
Allowed substitution hints:   𝑅(𝑥,𝑧)

Proof of Theorem trcoss2
StepHypRef Expression
1 alcom 2157 . . 3 (∀𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑧𝑦((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
21albii 1822 . 2 (∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑥𝑧𝑦((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
3 19.23v 1946 . . . 4 (∀𝑦(𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) → ([𝑥]𝑅 ∩ [𝑧]𝑅) ≠ ∅) ↔ (∃𝑦 𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) → ([𝑥]𝑅 ∩ [𝑧]𝑅) ≠ ∅))
4 eleccossin 36991 . . . . . . . 8 ((𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ↔ (𝑥𝑅𝑦𝑦𝑅𝑧)))
54el2v 3452 . . . . . . 7 (𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ↔ (𝑥𝑅𝑦𝑦𝑅𝑧))
65bicomi 223 . . . . . 6 ((𝑥𝑅𝑦𝑦𝑅𝑧) ↔ 𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅))
7 brcoss3 36941 . . . . . . 7 ((𝑥 ∈ V ∧ 𝑧 ∈ V) → (𝑥𝑅𝑧 ↔ ([𝑥]𝑅 ∩ [𝑧]𝑅) ≠ ∅))
87el2v 3452 . . . . . 6 (𝑥𝑅𝑧 ↔ ([𝑥]𝑅 ∩ [𝑧]𝑅) ≠ ∅)
96, 8imbi12i 351 . . . . 5 (((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ (𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) → ([𝑥]𝑅 ∩ [𝑧]𝑅) ≠ ∅))
109albii 1822 . . . 4 (∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑦(𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) → ([𝑥]𝑅 ∩ [𝑧]𝑅) ≠ ∅))
11 n0 4307 . . . . 5 (([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅))
1211imbi1i 350 . . . 4 ((([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ → ([𝑥]𝑅 ∩ [𝑧]𝑅) ≠ ∅) ↔ (∃𝑦 𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) → ([𝑥]𝑅 ∩ [𝑧]𝑅) ≠ ∅))
133, 10, 123bitr4i 303 . . 3 (∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ (([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ → ([𝑥]𝑅 ∩ [𝑧]𝑅) ≠ ∅))
14132albii 1823 . 2 (∀𝑥𝑧𝑦((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑥𝑧(([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ → ([𝑥]𝑅 ∩ [𝑧]𝑅) ≠ ∅))
152, 14bitri 275 1 (∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑥𝑧(([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ → ([𝑥]𝑅 ∩ [𝑧]𝑅) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wal 1540  wex 1782  wcel 2107  wne 2940  Vcvv 3444  cin 3910  c0 4283   class class class wbr 5106  ccnv 5633  [cec 8649  ccoss 36680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-br 5107  df-opab 5169  df-xp 5640  df-rel 5641  df-cnv 5642  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-ec 8653  df-coss 36919
This theorem is referenced by:  eqvrelcoss4  37128
  Copyright terms: Public domain W3C validator