Proof of Theorem trcoss2
| Step | Hyp | Ref
| Expression |
| 1 | | alcom 2158 |
. . 3
⊢
(∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧) ↔ ∀𝑧∀𝑦((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) |
| 2 | 1 | albii 1818 |
. 2
⊢
(∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧) ↔ ∀𝑥∀𝑧∀𝑦((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) |
| 3 | | 19.23v 1941 |
. . . 4
⊢
(∀𝑦(𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) → ([𝑥]◡𝑅 ∩ [𝑧]◡𝑅) ≠ ∅) ↔ (∃𝑦 𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) → ([𝑥]◡𝑅 ∩ [𝑧]◡𝑅) ≠ ∅)) |
| 4 | | eleccossin 38425 |
. . . . . . . 8
⊢ ((𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ↔ (𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧))) |
| 5 | 4 | el2v 3471 |
. . . . . . 7
⊢ (𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ↔ (𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧)) |
| 6 | 5 | bicomi 224 |
. . . . . 6
⊢ ((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) ↔ 𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅)) |
| 7 | | brcoss3 38375 |
. . . . . . 7
⊢ ((𝑥 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ≀ 𝑅𝑧 ↔ ([𝑥]◡𝑅 ∩ [𝑧]◡𝑅) ≠ ∅)) |
| 8 | 7 | el2v 3471 |
. . . . . 6
⊢ (𝑥 ≀ 𝑅𝑧 ↔ ([𝑥]◡𝑅 ∩ [𝑧]◡𝑅) ≠ ∅) |
| 9 | 6, 8 | imbi12i 350 |
. . . . 5
⊢ (((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧) ↔ (𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) → ([𝑥]◡𝑅 ∩ [𝑧]◡𝑅) ≠ ∅)) |
| 10 | 9 | albii 1818 |
. . . 4
⊢
(∀𝑦((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧) ↔ ∀𝑦(𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) → ([𝑥]◡𝑅 ∩ [𝑧]◡𝑅) ≠ ∅)) |
| 11 | | n0 4335 |
. . . . 5
⊢ (([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅)) |
| 12 | 11 | imbi1i 349 |
. . . 4
⊢ ((([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ → ([𝑥]◡𝑅 ∩ [𝑧]◡𝑅) ≠ ∅) ↔ (∃𝑦 𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) → ([𝑥]◡𝑅 ∩ [𝑧]◡𝑅) ≠ ∅)) |
| 13 | 3, 10, 12 | 3bitr4i 303 |
. . 3
⊢
(∀𝑦((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧) ↔ (([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ → ([𝑥]◡𝑅 ∩ [𝑧]◡𝑅) ≠ ∅)) |
| 14 | 13 | 2albii 1819 |
. 2
⊢
(∀𝑥∀𝑧∀𝑦((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧) ↔ ∀𝑥∀𝑧(([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ → ([𝑥]◡𝑅 ∩ [𝑧]◡𝑅) ≠ ∅)) |
| 15 | 2, 14 | bitri 275 |
1
⊢
(∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧) ↔ ∀𝑥∀𝑧(([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ → ([𝑥]◡𝑅 ∩ [𝑧]◡𝑅) ≠ ∅)) |