MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem4 Structured version   Visualization version   GIF version

Theorem fin1a2lem4 9511
Description: Lemma for fin1a2 9523. (Contributed by Stefan O'Rear, 7-Nov-2014.)
Hypothesis
Ref Expression
fin1a2lem.b 𝐸 = (𝑥 ∈ ω ↦ (2𝑜 ·𝑜 𝑥))
Assertion
Ref Expression
fin1a2lem4 𝐸:ω–1-1→ω

Proof of Theorem fin1a2lem4
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fin1a2lem.b . . 3 𝐸 = (𝑥 ∈ ω ↦ (2𝑜 ·𝑜 𝑥))
2 2onn 7958 . . . 4 2𝑜 ∈ ω
3 nnmcl 7930 . . . 4 ((2𝑜 ∈ ω ∧ 𝑥 ∈ ω) → (2𝑜 ·𝑜 𝑥) ∈ ω)
42, 3mpan 682 . . 3 (𝑥 ∈ ω → (2𝑜 ·𝑜 𝑥) ∈ ω)
51, 4fmpti 6606 . 2 𝐸:ω⟶ω
61fin1a2lem3 9510 . . . . . 6 (𝑎 ∈ ω → (𝐸𝑎) = (2𝑜 ·𝑜 𝑎))
71fin1a2lem3 9510 . . . . . 6 (𝑏 ∈ ω → (𝐸𝑏) = (2𝑜 ·𝑜 𝑏))
86, 7eqeqan12d 2813 . . . . 5 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ((𝐸𝑎) = (𝐸𝑏) ↔ (2𝑜 ·𝑜 𝑎) = (2𝑜 ·𝑜 𝑏)))
9 2on 7806 . . . . . . 7 2𝑜 ∈ On
109a1i 11 . . . . . 6 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → 2𝑜 ∈ On)
11 nnon 7303 . . . . . . 7 (𝑎 ∈ ω → 𝑎 ∈ On)
1211adantr 473 . . . . . 6 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → 𝑎 ∈ On)
13 nnon 7303 . . . . . . 7 (𝑏 ∈ ω → 𝑏 ∈ On)
1413adantl 474 . . . . . 6 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → 𝑏 ∈ On)
15 0lt1o 7822 . . . . . . . . 9 ∅ ∈ 1𝑜
16 elelsuc 6011 . . . . . . . . 9 (∅ ∈ 1𝑜 → ∅ ∈ suc 1𝑜)
1715, 16ax-mp 5 . . . . . . . 8 ∅ ∈ suc 1𝑜
18 df-2o 7798 . . . . . . . 8 2𝑜 = suc 1𝑜
1917, 18eleqtrri 2875 . . . . . . 7 ∅ ∈ 2𝑜
2019a1i 11 . . . . . 6 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ∅ ∈ 2𝑜)
21 omcan 7887 . . . . . 6 (((2𝑜 ∈ On ∧ 𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ ∅ ∈ 2𝑜) → ((2𝑜 ·𝑜 𝑎) = (2𝑜 ·𝑜 𝑏) ↔ 𝑎 = 𝑏))
2210, 12, 14, 20, 21syl31anc 1493 . . . . 5 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ((2𝑜 ·𝑜 𝑎) = (2𝑜 ·𝑜 𝑏) ↔ 𝑎 = 𝑏))
238, 22bitrd 271 . . . 4 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ((𝐸𝑎) = (𝐸𝑏) ↔ 𝑎 = 𝑏))
2423biimpd 221 . . 3 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ((𝐸𝑎) = (𝐸𝑏) → 𝑎 = 𝑏))
2524rgen2a 3156 . 2 𝑎 ∈ ω ∀𝑏 ∈ ω ((𝐸𝑎) = (𝐸𝑏) → 𝑎 = 𝑏)
26 dff13 6738 . 2 (𝐸:ω–1-1→ω ↔ (𝐸:ω⟶ω ∧ ∀𝑎 ∈ ω ∀𝑏 ∈ ω ((𝐸𝑎) = (𝐸𝑏) → 𝑎 = 𝑏)))
275, 25, 26mpbir2an 703 1 𝐸:ω–1-1→ω
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  wral 3087  c0 4113  cmpt 4920  Oncon0 5939  suc csuc 5941  wf 6095  1-1wf1 6096  cfv 6099  (class class class)co 6876  ωcom 7297  1𝑜c1o 7790  2𝑜c2o 7791   ·𝑜 comu 7795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-ral 3092  df-rex 3093  df-reu 3094  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-om 7298  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-1o 7797  df-2o 7798  df-oadd 7801  df-omul 7802
This theorem is referenced by:  fin1a2lem5  9512  fin1a2lem6  9513  fin1a2lem7  9514
  Copyright terms: Public domain W3C validator