| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fin1a2lem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for fin1a2 10317. (Contributed by Stefan O'Rear, 7-Nov-2014.) |
| Ref | Expression |
|---|---|
| fin1a2lem.b | ⊢ 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥)) |
| Ref | Expression |
|---|---|
| fin1a2lem4 | ⊢ 𝐸:ω–1-1→ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin1a2lem.b | . . 3 ⊢ 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥)) | |
| 2 | 2onn 8566 | . . . 4 ⊢ 2o ∈ ω | |
| 3 | nnmcl 8536 | . . . 4 ⊢ ((2o ∈ ω ∧ 𝑥 ∈ ω) → (2o ·o 𝑥) ∈ ω) | |
| 4 | 2, 3 | mpan 690 | . . 3 ⊢ (𝑥 ∈ ω → (2o ·o 𝑥) ∈ ω) |
| 5 | 1, 4 | fmpti 7054 | . 2 ⊢ 𝐸:ω⟶ω |
| 6 | 1 | fin1a2lem3 10304 | . . . . . 6 ⊢ (𝑎 ∈ ω → (𝐸‘𝑎) = (2o ·o 𝑎)) |
| 7 | 1 | fin1a2lem3 10304 | . . . . . 6 ⊢ (𝑏 ∈ ω → (𝐸‘𝑏) = (2o ·o 𝑏)) |
| 8 | 6, 7 | eqeqan12d 2747 | . . . . 5 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ((𝐸‘𝑎) = (𝐸‘𝑏) ↔ (2o ·o 𝑎) = (2o ·o 𝑏))) |
| 9 | 2on 8407 | . . . . . . 7 ⊢ 2o ∈ On | |
| 10 | 9 | a1i 11 | . . . . . 6 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → 2o ∈ On) |
| 11 | nnon 7811 | . . . . . . 7 ⊢ (𝑎 ∈ ω → 𝑎 ∈ On) | |
| 12 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → 𝑎 ∈ On) |
| 13 | nnon 7811 | . . . . . . 7 ⊢ (𝑏 ∈ ω → 𝑏 ∈ On) | |
| 14 | 13 | adantl 481 | . . . . . 6 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → 𝑏 ∈ On) |
| 15 | 0lt1o 8428 | . . . . . . . . 9 ⊢ ∅ ∈ 1o | |
| 16 | elelsuc 6389 | . . . . . . . . 9 ⊢ (∅ ∈ 1o → ∅ ∈ suc 1o) | |
| 17 | 15, 16 | ax-mp 5 | . . . . . . . 8 ⊢ ∅ ∈ suc 1o |
| 18 | df-2o 8395 | . . . . . . . 8 ⊢ 2o = suc 1o | |
| 19 | 17, 18 | eleqtrri 2832 | . . . . . . 7 ⊢ ∅ ∈ 2o |
| 20 | 19 | a1i 11 | . . . . . 6 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ∅ ∈ 2o) |
| 21 | omcan 8493 | . . . . . 6 ⊢ (((2o ∈ On ∧ 𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ ∅ ∈ 2o) → ((2o ·o 𝑎) = (2o ·o 𝑏) ↔ 𝑎 = 𝑏)) | |
| 22 | 10, 12, 14, 20, 21 | syl31anc 1375 | . . . . 5 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ((2o ·o 𝑎) = (2o ·o 𝑏) ↔ 𝑎 = 𝑏)) |
| 23 | 8, 22 | bitrd 279 | . . . 4 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ((𝐸‘𝑎) = (𝐸‘𝑏) ↔ 𝑎 = 𝑏)) |
| 24 | 23 | biimpd 229 | . . 3 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ((𝐸‘𝑎) = (𝐸‘𝑏) → 𝑎 = 𝑏)) |
| 25 | 24 | rgen2 3173 | . 2 ⊢ ∀𝑎 ∈ ω ∀𝑏 ∈ ω ((𝐸‘𝑎) = (𝐸‘𝑏) → 𝑎 = 𝑏) |
| 26 | dff13 7197 | . 2 ⊢ (𝐸:ω–1-1→ω ↔ (𝐸:ω⟶ω ∧ ∀𝑎 ∈ ω ∀𝑏 ∈ ω ((𝐸‘𝑎) = (𝐸‘𝑏) → 𝑎 = 𝑏))) | |
| 27 | 5, 25, 26 | mpbir2an 711 | 1 ⊢ 𝐸:ω–1-1→ω |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∅c0 4282 ↦ cmpt 5176 Oncon0 6314 suc csuc 6316 ⟶wf 6485 –1-1→wf1 6486 ‘cfv 6489 (class class class)co 7355 ωcom 7805 1oc1o 8387 2oc2o 8388 ·o comu 8392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-oadd 8398 df-omul 8399 |
| This theorem is referenced by: fin1a2lem5 10306 fin1a2lem6 10307 fin1a2lem7 10308 |
| Copyright terms: Public domain | W3C validator |