Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fin1a2lem4 | Structured version Visualization version GIF version |
Description: Lemma for fin1a2 10171. (Contributed by Stefan O'Rear, 7-Nov-2014.) |
Ref | Expression |
---|---|
fin1a2lem.b | ⊢ 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥)) |
Ref | Expression |
---|---|
fin1a2lem4 | ⊢ 𝐸:ω–1-1→ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fin1a2lem.b | . . 3 ⊢ 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥)) | |
2 | 2onn 8472 | . . . 4 ⊢ 2o ∈ ω | |
3 | nnmcl 8443 | . . . 4 ⊢ ((2o ∈ ω ∧ 𝑥 ∈ ω) → (2o ·o 𝑥) ∈ ω) | |
4 | 2, 3 | mpan 687 | . . 3 ⊢ (𝑥 ∈ ω → (2o ·o 𝑥) ∈ ω) |
5 | 1, 4 | fmpti 6986 | . 2 ⊢ 𝐸:ω⟶ω |
6 | 1 | fin1a2lem3 10158 | . . . . . 6 ⊢ (𝑎 ∈ ω → (𝐸‘𝑎) = (2o ·o 𝑎)) |
7 | 1 | fin1a2lem3 10158 | . . . . . 6 ⊢ (𝑏 ∈ ω → (𝐸‘𝑏) = (2o ·o 𝑏)) |
8 | 6, 7 | eqeqan12d 2752 | . . . . 5 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ((𝐸‘𝑎) = (𝐸‘𝑏) ↔ (2o ·o 𝑎) = (2o ·o 𝑏))) |
9 | 2on 8311 | . . . . . . 7 ⊢ 2o ∈ On | |
10 | 9 | a1i 11 | . . . . . 6 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → 2o ∈ On) |
11 | nnon 7718 | . . . . . . 7 ⊢ (𝑎 ∈ ω → 𝑎 ∈ On) | |
12 | 11 | adantr 481 | . . . . . 6 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → 𝑎 ∈ On) |
13 | nnon 7718 | . . . . . . 7 ⊢ (𝑏 ∈ ω → 𝑏 ∈ On) | |
14 | 13 | adantl 482 | . . . . . 6 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → 𝑏 ∈ On) |
15 | 0lt1o 8334 | . . . . . . . . 9 ⊢ ∅ ∈ 1o | |
16 | elelsuc 6338 | . . . . . . . . 9 ⊢ (∅ ∈ 1o → ∅ ∈ suc 1o) | |
17 | 15, 16 | ax-mp 5 | . . . . . . . 8 ⊢ ∅ ∈ suc 1o |
18 | df-2o 8298 | . . . . . . . 8 ⊢ 2o = suc 1o | |
19 | 17, 18 | eleqtrri 2838 | . . . . . . 7 ⊢ ∅ ∈ 2o |
20 | 19 | a1i 11 | . . . . . 6 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ∅ ∈ 2o) |
21 | omcan 8400 | . . . . . 6 ⊢ (((2o ∈ On ∧ 𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ ∅ ∈ 2o) → ((2o ·o 𝑎) = (2o ·o 𝑏) ↔ 𝑎 = 𝑏)) | |
22 | 10, 12, 14, 20, 21 | syl31anc 1372 | . . . . 5 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ((2o ·o 𝑎) = (2o ·o 𝑏) ↔ 𝑎 = 𝑏)) |
23 | 8, 22 | bitrd 278 | . . . 4 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ((𝐸‘𝑎) = (𝐸‘𝑏) ↔ 𝑎 = 𝑏)) |
24 | 23 | biimpd 228 | . . 3 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ((𝐸‘𝑎) = (𝐸‘𝑏) → 𝑎 = 𝑏)) |
25 | 24 | rgen2 3120 | . 2 ⊢ ∀𝑎 ∈ ω ∀𝑏 ∈ ω ((𝐸‘𝑎) = (𝐸‘𝑏) → 𝑎 = 𝑏) |
26 | dff13 7128 | . 2 ⊢ (𝐸:ω–1-1→ω ↔ (𝐸:ω⟶ω ∧ ∀𝑎 ∈ ω ∀𝑏 ∈ ω ((𝐸‘𝑎) = (𝐸‘𝑏) → 𝑎 = 𝑏))) | |
27 | 5, 25, 26 | mpbir2an 708 | 1 ⊢ 𝐸:ω–1-1→ω |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∅c0 4256 ↦ cmpt 5157 Oncon0 6266 suc csuc 6268 ⟶wf 6429 –1-1→wf1 6430 ‘cfv 6433 (class class class)co 7275 ωcom 7712 1oc1o 8290 2oc2o 8291 ·o comu 8295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-oadd 8301 df-omul 8302 |
This theorem is referenced by: fin1a2lem5 10160 fin1a2lem6 10161 fin1a2lem7 10162 |
Copyright terms: Public domain | W3C validator |