Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fin1a2lem4 | Structured version Visualization version GIF version |
Description: Lemma for fin1a2 10102. (Contributed by Stefan O'Rear, 7-Nov-2014.) |
Ref | Expression |
---|---|
fin1a2lem.b | ⊢ 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥)) |
Ref | Expression |
---|---|
fin1a2lem4 | ⊢ 𝐸:ω–1-1→ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fin1a2lem.b | . . 3 ⊢ 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥)) | |
2 | 2onn 8433 | . . . 4 ⊢ 2o ∈ ω | |
3 | nnmcl 8405 | . . . 4 ⊢ ((2o ∈ ω ∧ 𝑥 ∈ ω) → (2o ·o 𝑥) ∈ ω) | |
4 | 2, 3 | mpan 686 | . . 3 ⊢ (𝑥 ∈ ω → (2o ·o 𝑥) ∈ ω) |
5 | 1, 4 | fmpti 6968 | . 2 ⊢ 𝐸:ω⟶ω |
6 | 1 | fin1a2lem3 10089 | . . . . . 6 ⊢ (𝑎 ∈ ω → (𝐸‘𝑎) = (2o ·o 𝑎)) |
7 | 1 | fin1a2lem3 10089 | . . . . . 6 ⊢ (𝑏 ∈ ω → (𝐸‘𝑏) = (2o ·o 𝑏)) |
8 | 6, 7 | eqeqan12d 2752 | . . . . 5 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ((𝐸‘𝑎) = (𝐸‘𝑏) ↔ (2o ·o 𝑎) = (2o ·o 𝑏))) |
9 | 2on 8275 | . . . . . . 7 ⊢ 2o ∈ On | |
10 | 9 | a1i 11 | . . . . . 6 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → 2o ∈ On) |
11 | nnon 7693 | . . . . . . 7 ⊢ (𝑎 ∈ ω → 𝑎 ∈ On) | |
12 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → 𝑎 ∈ On) |
13 | nnon 7693 | . . . . . . 7 ⊢ (𝑏 ∈ ω → 𝑏 ∈ On) | |
14 | 13 | adantl 481 | . . . . . 6 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → 𝑏 ∈ On) |
15 | 0lt1o 8296 | . . . . . . . . 9 ⊢ ∅ ∈ 1o | |
16 | elelsuc 6323 | . . . . . . . . 9 ⊢ (∅ ∈ 1o → ∅ ∈ suc 1o) | |
17 | 15, 16 | ax-mp 5 | . . . . . . . 8 ⊢ ∅ ∈ suc 1o |
18 | df-2o 8268 | . . . . . . . 8 ⊢ 2o = suc 1o | |
19 | 17, 18 | eleqtrri 2838 | . . . . . . 7 ⊢ ∅ ∈ 2o |
20 | 19 | a1i 11 | . . . . . 6 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ∅ ∈ 2o) |
21 | omcan 8362 | . . . . . 6 ⊢ (((2o ∈ On ∧ 𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ ∅ ∈ 2o) → ((2o ·o 𝑎) = (2o ·o 𝑏) ↔ 𝑎 = 𝑏)) | |
22 | 10, 12, 14, 20, 21 | syl31anc 1371 | . . . . 5 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ((2o ·o 𝑎) = (2o ·o 𝑏) ↔ 𝑎 = 𝑏)) |
23 | 8, 22 | bitrd 278 | . . . 4 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ((𝐸‘𝑎) = (𝐸‘𝑏) ↔ 𝑎 = 𝑏)) |
24 | 23 | biimpd 228 | . . 3 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ((𝐸‘𝑎) = (𝐸‘𝑏) → 𝑎 = 𝑏)) |
25 | 24 | rgen2 3126 | . 2 ⊢ ∀𝑎 ∈ ω ∀𝑏 ∈ ω ((𝐸‘𝑎) = (𝐸‘𝑏) → 𝑎 = 𝑏) |
26 | dff13 7109 | . 2 ⊢ (𝐸:ω–1-1→ω ↔ (𝐸:ω⟶ω ∧ ∀𝑎 ∈ ω ∀𝑏 ∈ ω ((𝐸‘𝑎) = (𝐸‘𝑏) → 𝑎 = 𝑏))) | |
27 | 5, 25, 26 | mpbir2an 707 | 1 ⊢ 𝐸:ω–1-1→ω |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∅c0 4253 ↦ cmpt 5153 Oncon0 6251 suc csuc 6253 ⟶wf 6414 –1-1→wf1 6415 ‘cfv 6418 (class class class)co 7255 ωcom 7687 1oc1o 8260 2oc2o 8261 ·o comu 8265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-omul 8272 |
This theorem is referenced by: fin1a2lem5 10091 fin1a2lem6 10092 fin1a2lem7 10093 |
Copyright terms: Public domain | W3C validator |