| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fin1a2lem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for fin1a2 10368. (Contributed by Stefan O'Rear, 7-Nov-2014.) |
| Ref | Expression |
|---|---|
| fin1a2lem.b | ⊢ 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥)) |
| Ref | Expression |
|---|---|
| fin1a2lem4 | ⊢ 𝐸:ω–1-1→ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin1a2lem.b | . . 3 ⊢ 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥)) | |
| 2 | 2onn 8606 | . . . 4 ⊢ 2o ∈ ω | |
| 3 | nnmcl 8576 | . . . 4 ⊢ ((2o ∈ ω ∧ 𝑥 ∈ ω) → (2o ·o 𝑥) ∈ ω) | |
| 4 | 2, 3 | mpan 690 | . . 3 ⊢ (𝑥 ∈ ω → (2o ·o 𝑥) ∈ ω) |
| 5 | 1, 4 | fmpti 7084 | . 2 ⊢ 𝐸:ω⟶ω |
| 6 | 1 | fin1a2lem3 10355 | . . . . . 6 ⊢ (𝑎 ∈ ω → (𝐸‘𝑎) = (2o ·o 𝑎)) |
| 7 | 1 | fin1a2lem3 10355 | . . . . . 6 ⊢ (𝑏 ∈ ω → (𝐸‘𝑏) = (2o ·o 𝑏)) |
| 8 | 6, 7 | eqeqan12d 2743 | . . . . 5 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ((𝐸‘𝑎) = (𝐸‘𝑏) ↔ (2o ·o 𝑎) = (2o ·o 𝑏))) |
| 9 | 2on 8447 | . . . . . . 7 ⊢ 2o ∈ On | |
| 10 | 9 | a1i 11 | . . . . . 6 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → 2o ∈ On) |
| 11 | nnon 7848 | . . . . . . 7 ⊢ (𝑎 ∈ ω → 𝑎 ∈ On) | |
| 12 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → 𝑎 ∈ On) |
| 13 | nnon 7848 | . . . . . . 7 ⊢ (𝑏 ∈ ω → 𝑏 ∈ On) | |
| 14 | 13 | adantl 481 | . . . . . 6 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → 𝑏 ∈ On) |
| 15 | 0lt1o 8468 | . . . . . . . . 9 ⊢ ∅ ∈ 1o | |
| 16 | elelsuc 6407 | . . . . . . . . 9 ⊢ (∅ ∈ 1o → ∅ ∈ suc 1o) | |
| 17 | 15, 16 | ax-mp 5 | . . . . . . . 8 ⊢ ∅ ∈ suc 1o |
| 18 | df-2o 8435 | . . . . . . . 8 ⊢ 2o = suc 1o | |
| 19 | 17, 18 | eleqtrri 2827 | . . . . . . 7 ⊢ ∅ ∈ 2o |
| 20 | 19 | a1i 11 | . . . . . 6 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ∅ ∈ 2o) |
| 21 | omcan 8533 | . . . . . 6 ⊢ (((2o ∈ On ∧ 𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ ∅ ∈ 2o) → ((2o ·o 𝑎) = (2o ·o 𝑏) ↔ 𝑎 = 𝑏)) | |
| 22 | 10, 12, 14, 20, 21 | syl31anc 1375 | . . . . 5 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ((2o ·o 𝑎) = (2o ·o 𝑏) ↔ 𝑎 = 𝑏)) |
| 23 | 8, 22 | bitrd 279 | . . . 4 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ((𝐸‘𝑎) = (𝐸‘𝑏) ↔ 𝑎 = 𝑏)) |
| 24 | 23 | biimpd 229 | . . 3 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ((𝐸‘𝑎) = (𝐸‘𝑏) → 𝑎 = 𝑏)) |
| 25 | 24 | rgen2 3177 | . 2 ⊢ ∀𝑎 ∈ ω ∀𝑏 ∈ ω ((𝐸‘𝑎) = (𝐸‘𝑏) → 𝑎 = 𝑏) |
| 26 | dff13 7229 | . 2 ⊢ (𝐸:ω–1-1→ω ↔ (𝐸:ω⟶ω ∧ ∀𝑎 ∈ ω ∀𝑏 ∈ ω ((𝐸‘𝑎) = (𝐸‘𝑏) → 𝑎 = 𝑏))) | |
| 27 | 5, 25, 26 | mpbir2an 711 | 1 ⊢ 𝐸:ω–1-1→ω |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∅c0 4296 ↦ cmpt 5188 Oncon0 6332 suc csuc 6334 ⟶wf 6507 –1-1→wf1 6508 ‘cfv 6511 (class class class)co 7387 ωcom 7842 1oc1o 8427 2oc2o 8428 ·o comu 8432 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-omul 8439 |
| This theorem is referenced by: fin1a2lem5 10357 fin1a2lem6 10358 fin1a2lem7 10359 |
| Copyright terms: Public domain | W3C validator |