![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin1a2lem4 | Structured version Visualization version GIF version |
Description: Lemma for fin1a2 9442. (Contributed by Stefan O'Rear, 7-Nov-2014.) |
Ref | Expression |
---|---|
fin1a2lem.b | ⊢ 𝐸 = (𝑥 ∈ ω ↦ (2𝑜 ·𝑜 𝑥)) |
Ref | Expression |
---|---|
fin1a2lem4 | ⊢ 𝐸:ω–1-1→ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fin1a2lem.b | . . 3 ⊢ 𝐸 = (𝑥 ∈ ω ↦ (2𝑜 ·𝑜 𝑥)) | |
2 | 2onn 7877 | . . . 4 ⊢ 2𝑜 ∈ ω | |
3 | nnmcl 7849 | . . . 4 ⊢ ((2𝑜 ∈ ω ∧ 𝑥 ∈ ω) → (2𝑜 ·𝑜 𝑥) ∈ ω) | |
4 | 2, 3 | mpan 670 | . . 3 ⊢ (𝑥 ∈ ω → (2𝑜 ·𝑜 𝑥) ∈ ω) |
5 | 1, 4 | fmpti 6527 | . 2 ⊢ 𝐸:ω⟶ω |
6 | 1 | fin1a2lem3 9429 | . . . . . 6 ⊢ (𝑎 ∈ ω → (𝐸‘𝑎) = (2𝑜 ·𝑜 𝑎)) |
7 | 1 | fin1a2lem3 9429 | . . . . . 6 ⊢ (𝑏 ∈ ω → (𝐸‘𝑏) = (2𝑜 ·𝑜 𝑏)) |
8 | 6, 7 | eqeqan12d 2787 | . . . . 5 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ((𝐸‘𝑎) = (𝐸‘𝑏) ↔ (2𝑜 ·𝑜 𝑎) = (2𝑜 ·𝑜 𝑏))) |
9 | 2on 7725 | . . . . . . 7 ⊢ 2𝑜 ∈ On | |
10 | 9 | a1i 11 | . . . . . 6 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → 2𝑜 ∈ On) |
11 | nnon 7221 | . . . . . . 7 ⊢ (𝑎 ∈ ω → 𝑎 ∈ On) | |
12 | 11 | adantr 466 | . . . . . 6 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → 𝑎 ∈ On) |
13 | nnon 7221 | . . . . . . 7 ⊢ (𝑏 ∈ ω → 𝑏 ∈ On) | |
14 | 13 | adantl 467 | . . . . . 6 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → 𝑏 ∈ On) |
15 | 0lt1o 7741 | . . . . . . . . 9 ⊢ ∅ ∈ 1𝑜 | |
16 | elelsuc 5939 | . . . . . . . . 9 ⊢ (∅ ∈ 1𝑜 → ∅ ∈ suc 1𝑜) | |
17 | 15, 16 | ax-mp 5 | . . . . . . . 8 ⊢ ∅ ∈ suc 1𝑜 |
18 | df-2o 7717 | . . . . . . . 8 ⊢ 2𝑜 = suc 1𝑜 | |
19 | 17, 18 | eleqtrri 2849 | . . . . . . 7 ⊢ ∅ ∈ 2𝑜 |
20 | 19 | a1i 11 | . . . . . 6 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ∅ ∈ 2𝑜) |
21 | omcan 7806 | . . . . . 6 ⊢ (((2𝑜 ∈ On ∧ 𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ ∅ ∈ 2𝑜) → ((2𝑜 ·𝑜 𝑎) = (2𝑜 ·𝑜 𝑏) ↔ 𝑎 = 𝑏)) | |
22 | 10, 12, 14, 20, 21 | syl31anc 1479 | . . . . 5 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ((2𝑜 ·𝑜 𝑎) = (2𝑜 ·𝑜 𝑏) ↔ 𝑎 = 𝑏)) |
23 | 8, 22 | bitrd 268 | . . . 4 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ((𝐸‘𝑎) = (𝐸‘𝑏) ↔ 𝑎 = 𝑏)) |
24 | 23 | biimpd 219 | . . 3 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ((𝐸‘𝑎) = (𝐸‘𝑏) → 𝑎 = 𝑏)) |
25 | 24 | rgen2a 3126 | . 2 ⊢ ∀𝑎 ∈ ω ∀𝑏 ∈ ω ((𝐸‘𝑎) = (𝐸‘𝑏) → 𝑎 = 𝑏) |
26 | dff13 6657 | . 2 ⊢ (𝐸:ω–1-1→ω ↔ (𝐸:ω⟶ω ∧ ∀𝑎 ∈ ω ∀𝑏 ∈ ω ((𝐸‘𝑎) = (𝐸‘𝑏) → 𝑎 = 𝑏))) | |
27 | 5, 25, 26 | mpbir2an 690 | 1 ⊢ 𝐸:ω–1-1→ω |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∀wral 3061 ∅c0 4063 ↦ cmpt 4864 Oncon0 5865 suc csuc 5867 ⟶wf 6026 –1-1→wf1 6027 ‘cfv 6030 (class class class)co 6795 ωcom 7215 1𝑜c1o 7709 2𝑜c2o 7710 ·𝑜 comu 7714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7099 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-ov 6798 df-oprab 6799 df-mpt2 6800 df-om 7216 df-wrecs 7562 df-recs 7624 df-rdg 7662 df-1o 7716 df-2o 7717 df-oadd 7720 df-omul 7721 |
This theorem is referenced by: fin1a2lem5 9431 fin1a2lem6 9432 fin1a2lem7 9433 |
Copyright terms: Public domain | W3C validator |