MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem4 Structured version   Visualization version   GIF version

Theorem fin1a2lem4 10159
Description: Lemma for fin1a2 10171. (Contributed by Stefan O'Rear, 7-Nov-2014.)
Hypothesis
Ref Expression
fin1a2lem.b 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥))
Assertion
Ref Expression
fin1a2lem4 𝐸:ω–1-1→ω

Proof of Theorem fin1a2lem4
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fin1a2lem.b . . 3 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥))
2 2onn 8472 . . . 4 2o ∈ ω
3 nnmcl 8443 . . . 4 ((2o ∈ ω ∧ 𝑥 ∈ ω) → (2o ·o 𝑥) ∈ ω)
42, 3mpan 687 . . 3 (𝑥 ∈ ω → (2o ·o 𝑥) ∈ ω)
51, 4fmpti 6986 . 2 𝐸:ω⟶ω
61fin1a2lem3 10158 . . . . . 6 (𝑎 ∈ ω → (𝐸𝑎) = (2o ·o 𝑎))
71fin1a2lem3 10158 . . . . . 6 (𝑏 ∈ ω → (𝐸𝑏) = (2o ·o 𝑏))
86, 7eqeqan12d 2752 . . . . 5 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ((𝐸𝑎) = (𝐸𝑏) ↔ (2o ·o 𝑎) = (2o ·o 𝑏)))
9 2on 8311 . . . . . . 7 2o ∈ On
109a1i 11 . . . . . 6 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → 2o ∈ On)
11 nnon 7718 . . . . . . 7 (𝑎 ∈ ω → 𝑎 ∈ On)
1211adantr 481 . . . . . 6 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → 𝑎 ∈ On)
13 nnon 7718 . . . . . . 7 (𝑏 ∈ ω → 𝑏 ∈ On)
1413adantl 482 . . . . . 6 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → 𝑏 ∈ On)
15 0lt1o 8334 . . . . . . . . 9 ∅ ∈ 1o
16 elelsuc 6338 . . . . . . . . 9 (∅ ∈ 1o → ∅ ∈ suc 1o)
1715, 16ax-mp 5 . . . . . . . 8 ∅ ∈ suc 1o
18 df-2o 8298 . . . . . . . 8 2o = suc 1o
1917, 18eleqtrri 2838 . . . . . . 7 ∅ ∈ 2o
2019a1i 11 . . . . . 6 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ∅ ∈ 2o)
21 omcan 8400 . . . . . 6 (((2o ∈ On ∧ 𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ ∅ ∈ 2o) → ((2o ·o 𝑎) = (2o ·o 𝑏) ↔ 𝑎 = 𝑏))
2210, 12, 14, 20, 21syl31anc 1372 . . . . 5 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ((2o ·o 𝑎) = (2o ·o 𝑏) ↔ 𝑎 = 𝑏))
238, 22bitrd 278 . . . 4 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ((𝐸𝑎) = (𝐸𝑏) ↔ 𝑎 = 𝑏))
2423biimpd 228 . . 3 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ((𝐸𝑎) = (𝐸𝑏) → 𝑎 = 𝑏))
2524rgen2 3120 . 2 𝑎 ∈ ω ∀𝑏 ∈ ω ((𝐸𝑎) = (𝐸𝑏) → 𝑎 = 𝑏)
26 dff13 7128 . 2 (𝐸:ω–1-1→ω ↔ (𝐸:ω⟶ω ∧ ∀𝑎 ∈ ω ∀𝑏 ∈ ω ((𝐸𝑎) = (𝐸𝑏) → 𝑎 = 𝑏)))
275, 25, 26mpbir2an 708 1 𝐸:ω–1-1→ω
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  c0 4256  cmpt 5157  Oncon0 6266  suc csuc 6268  wf 6429  1-1wf1 6430  cfv 6433  (class class class)co 7275  ωcom 7712  1oc1o 8290  2oc2o 8291   ·o comu 8295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302
This theorem is referenced by:  fin1a2lem5  10160  fin1a2lem6  10161  fin1a2lem7  10162
  Copyright terms: Public domain W3C validator