| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fin1a2lem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for fin1a2 10301. (Contributed by Stefan O'Rear, 7-Nov-2014.) |
| Ref | Expression |
|---|---|
| fin1a2lem.b | ⊢ 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥)) |
| Ref | Expression |
|---|---|
| fin1a2lem4 | ⊢ 𝐸:ω–1-1→ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin1a2lem.b | . . 3 ⊢ 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥)) | |
| 2 | 2onn 8552 | . . . 4 ⊢ 2o ∈ ω | |
| 3 | nnmcl 8522 | . . . 4 ⊢ ((2o ∈ ω ∧ 𝑥 ∈ ω) → (2o ·o 𝑥) ∈ ω) | |
| 4 | 2, 3 | mpan 690 | . . 3 ⊢ (𝑥 ∈ ω → (2o ·o 𝑥) ∈ ω) |
| 5 | 1, 4 | fmpti 7040 | . 2 ⊢ 𝐸:ω⟶ω |
| 6 | 1 | fin1a2lem3 10288 | . . . . . 6 ⊢ (𝑎 ∈ ω → (𝐸‘𝑎) = (2o ·o 𝑎)) |
| 7 | 1 | fin1a2lem3 10288 | . . . . . 6 ⊢ (𝑏 ∈ ω → (𝐸‘𝑏) = (2o ·o 𝑏)) |
| 8 | 6, 7 | eqeqan12d 2745 | . . . . 5 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ((𝐸‘𝑎) = (𝐸‘𝑏) ↔ (2o ·o 𝑎) = (2o ·o 𝑏))) |
| 9 | 2on 8393 | . . . . . . 7 ⊢ 2o ∈ On | |
| 10 | 9 | a1i 11 | . . . . . 6 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → 2o ∈ On) |
| 11 | nnon 7797 | . . . . . . 7 ⊢ (𝑎 ∈ ω → 𝑎 ∈ On) | |
| 12 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → 𝑎 ∈ On) |
| 13 | nnon 7797 | . . . . . . 7 ⊢ (𝑏 ∈ ω → 𝑏 ∈ On) | |
| 14 | 13 | adantl 481 | . . . . . 6 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → 𝑏 ∈ On) |
| 15 | 0lt1o 8414 | . . . . . . . . 9 ⊢ ∅ ∈ 1o | |
| 16 | elelsuc 6376 | . . . . . . . . 9 ⊢ (∅ ∈ 1o → ∅ ∈ suc 1o) | |
| 17 | 15, 16 | ax-mp 5 | . . . . . . . 8 ⊢ ∅ ∈ suc 1o |
| 18 | df-2o 8381 | . . . . . . . 8 ⊢ 2o = suc 1o | |
| 19 | 17, 18 | eleqtrri 2830 | . . . . . . 7 ⊢ ∅ ∈ 2o |
| 20 | 19 | a1i 11 | . . . . . 6 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ∅ ∈ 2o) |
| 21 | omcan 8479 | . . . . . 6 ⊢ (((2o ∈ On ∧ 𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ ∅ ∈ 2o) → ((2o ·o 𝑎) = (2o ·o 𝑏) ↔ 𝑎 = 𝑏)) | |
| 22 | 10, 12, 14, 20, 21 | syl31anc 1375 | . . . . 5 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ((2o ·o 𝑎) = (2o ·o 𝑏) ↔ 𝑎 = 𝑏)) |
| 23 | 8, 22 | bitrd 279 | . . . 4 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ((𝐸‘𝑎) = (𝐸‘𝑏) ↔ 𝑎 = 𝑏)) |
| 24 | 23 | biimpd 229 | . . 3 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ((𝐸‘𝑎) = (𝐸‘𝑏) → 𝑎 = 𝑏)) |
| 25 | 24 | rgen2 3172 | . 2 ⊢ ∀𝑎 ∈ ω ∀𝑏 ∈ ω ((𝐸‘𝑎) = (𝐸‘𝑏) → 𝑎 = 𝑏) |
| 26 | dff13 7183 | . 2 ⊢ (𝐸:ω–1-1→ω ↔ (𝐸:ω⟶ω ∧ ∀𝑎 ∈ ω ∀𝑏 ∈ ω ((𝐸‘𝑎) = (𝐸‘𝑏) → 𝑎 = 𝑏))) | |
| 27 | 5, 25, 26 | mpbir2an 711 | 1 ⊢ 𝐸:ω–1-1→ω |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∅c0 4278 ↦ cmpt 5167 Oncon0 6301 suc csuc 6303 ⟶wf 6472 –1-1→wf1 6473 ‘cfv 6476 (class class class)co 7341 ωcom 7791 1oc1o 8373 2oc2o 8374 ·o comu 8378 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-omul 8385 |
| This theorem is referenced by: fin1a2lem5 10290 fin1a2lem6 10291 fin1a2lem7 10292 |
| Copyright terms: Public domain | W3C validator |