Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satf00 Structured version   Visualization version   GIF version

Theorem satf00 32629
Description: The value of the satisfaction predicate as function over wff codes in the empty model with an empty binary relation at . (Contributed by AV, 14-Sep-2023.)
Assertion
Ref Expression
satf00 ((∅ Sat ∅)‘∅) = {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}
Distinct variable group:   𝑖,𝑗,𝑥,𝑦

Proof of Theorem satf00
Dummy variables 𝑓 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano1 7576 . . 3 ∅ ∈ ω
2 elelsuc 6236 . . 3 (∅ ∈ ω → ∅ ∈ suc ω)
3 satf0sucom 32628 . . 3 (∅ ∈ suc ω → ((∅ Sat ∅)‘∅) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘∅))
41, 2, 3mp2b 10 . 2 ((∅ Sat ∅)‘∅) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘∅)
5 omex 9082 . . . 4 ω ∈ V
65, 5xpex 7451 . . . 4 (ω × ω) ∈ V
7 xpexg 7448 . . . . 5 ((ω ∈ V ∧ (ω × ω) ∈ V) → (ω × (ω × ω)) ∈ V)
8 simpl 486 . . . . 5 ((ω ∈ V ∧ (ω × ω) ∈ V) → ω ∈ V)
9 goelel3xp 32603 . . . . . . . 8 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑖𝑔𝑗) ∈ (ω × (ω × ω)))
10 eleq1 2899 . . . . . . . 8 (𝑥 = (𝑖𝑔𝑗) → (𝑥 ∈ (ω × (ω × ω)) ↔ (𝑖𝑔𝑗) ∈ (ω × (ω × ω))))
119, 10syl5ibrcom 250 . . . . . . 7 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑥 = (𝑖𝑔𝑗) → 𝑥 ∈ (ω × (ω × ω))))
1211rexlimivv 3278 . . . . . 6 (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) → 𝑥 ∈ (ω × (ω × ω)))
1312ad2antll 728 . . . . 5 (((ω ∈ V ∧ (ω × ω) ∈ V) ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))) → 𝑥 ∈ (ω × (ω × ω)))
14 eleq1 2899 . . . . . . 7 (𝑦 = ∅ → (𝑦 ∈ ω ↔ ∅ ∈ ω))
151, 14mpbiri 261 . . . . . 6 (𝑦 = ∅ → 𝑦 ∈ ω)
1615ad2antrl 727 . . . . 5 (((ω ∈ V ∧ (ω × ω) ∈ V) ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))) → 𝑦 ∈ ω)
177, 8, 13, 16opabex2 7730 . . . 4 ((ω ∈ V ∧ (ω × ω) ∈ V) → {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))} ∈ V)
185, 6, 17mp2an 691 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))} ∈ V
1918rdg0 8032 . 2 (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘∅) = {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}
204, 19eqtri 2844 1 ((∅ Sat ∅)‘∅) = {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}
Colors of variables: wff setvar class
Syntax hints:  wa 399  wo 844   = wceq 1538  wcel 2115  wrex 3127  Vcvv 3471  cun 3908  c0 4266  {copab 5101  cmpt 5119   × cxp 5526  suc csuc 6166  cfv 6328  (class class class)co 7130  ωcom 7555  1st c1st 7662  reccrdg 8020  𝑔cgoe 32588  𝑔cgna 32589  𝑔cgol 32590   Sat csat 32591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-inf2 9080
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-ral 3131  df-rex 3132  df-reu 3133  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-map 8383  df-goel 32595  df-sat 32598
This theorem is referenced by:  satf0op  32632  satf0n0  32633  sat1el2xp  32634  fmla0  32637  fmlafvel  32640
  Copyright terms: Public domain W3C validator