![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > satf00 | Structured version Visualization version GIF version |
Description: The value of the satisfaction predicate as function over wff codes in the empty model with an empty binary relation at ∅. (Contributed by AV, 14-Sep-2023.) |
Ref | Expression |
---|---|
satf00 | ⊢ ((∅ Sat ∅)‘∅) = {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano1 7875 | . . 3 ⊢ ∅ ∈ ω | |
2 | elelsuc 6434 | . . 3 ⊢ (∅ ∈ ω → ∅ ∈ suc ω) | |
3 | satf0sucom 34352 | . . 3 ⊢ (∅ ∈ suc ω → ((∅ Sat ∅)‘∅) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st ‘𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘∅)) | |
4 | 1, 2, 3 | mp2b 10 | . 2 ⊢ ((∅ Sat ∅)‘∅) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st ‘𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘∅) |
5 | omex 9634 | . . . 4 ⊢ ω ∈ V | |
6 | 5, 5 | xpex 7736 | . . . 4 ⊢ (ω × ω) ∈ V |
7 | xpexg 7733 | . . . . 5 ⊢ ((ω ∈ V ∧ (ω × ω) ∈ V) → (ω × (ω × ω)) ∈ V) | |
8 | simpl 483 | . . . . 5 ⊢ ((ω ∈ V ∧ (ω × ω) ∈ V) → ω ∈ V) | |
9 | goelel3xp 34327 | . . . . . . . 8 ⊢ ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑖∈𝑔𝑗) ∈ (ω × (ω × ω))) | |
10 | eleq1 2821 | . . . . . . . 8 ⊢ (𝑥 = (𝑖∈𝑔𝑗) → (𝑥 ∈ (ω × (ω × ω)) ↔ (𝑖∈𝑔𝑗) ∈ (ω × (ω × ω)))) | |
11 | 9, 10 | syl5ibrcom 246 | . . . . . . 7 ⊢ ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑥 = (𝑖∈𝑔𝑗) → 𝑥 ∈ (ω × (ω × ω)))) |
12 | 11 | rexlimivv 3199 | . . . . . 6 ⊢ (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗) → 𝑥 ∈ (ω × (ω × ω))) |
13 | 12 | ad2antll 727 | . . . . 5 ⊢ (((ω ∈ V ∧ (ω × ω) ∈ V) ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))) → 𝑥 ∈ (ω × (ω × ω))) |
14 | eleq1 2821 | . . . . . . 7 ⊢ (𝑦 = ∅ → (𝑦 ∈ ω ↔ ∅ ∈ ω)) | |
15 | 1, 14 | mpbiri 257 | . . . . . 6 ⊢ (𝑦 = ∅ → 𝑦 ∈ ω) |
16 | 15 | ad2antrl 726 | . . . . 5 ⊢ (((ω ∈ V ∧ (ω × ω) ∈ V) ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))) → 𝑦 ∈ ω) |
17 | 7, 8, 13, 16 | opabex2 8039 | . . . 4 ⊢ ((ω ∈ V ∧ (ω × ω) ∈ V) → {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} ∈ V) |
18 | 5, 6, 17 | mp2an 690 | . . 3 ⊢ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} ∈ V |
19 | 18 | rdg0 8417 | . 2 ⊢ (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st ‘𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘∅) = {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} |
20 | 4, 19 | eqtri 2760 | 1 ⊢ ((∅ Sat ∅)‘∅) = {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∨ wo 845 = wceq 1541 ∈ wcel 2106 ∃wrex 3070 Vcvv 3474 ∪ cun 3945 ∅c0 4321 {copab 5209 ↦ cmpt 5230 × cxp 5673 suc csuc 6363 ‘cfv 6540 (class class class)co 7405 ωcom 7851 1st c1st 7969 reccrdg 8405 ∈𝑔cgoe 34312 ⊼𝑔cgna 34313 ∀𝑔cgol 34314 Sat csat 34315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-map 8818 df-goel 34319 df-sat 34322 |
This theorem is referenced by: satf0op 34356 satf0n0 34357 sat1el2xp 34358 fmla0 34361 fmlafvel 34364 |
Copyright terms: Public domain | W3C validator |