| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > satf00 | Structured version Visualization version GIF version | ||
| Description: The value of the satisfaction predicate as function over wff codes in the empty model with an empty binary relation at ∅. (Contributed by AV, 14-Sep-2023.) |
| Ref | Expression |
|---|---|
| satf00 | ⊢ ((∅ Sat ∅)‘∅) = {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano1 7882 | . . 3 ⊢ ∅ ∈ ω | |
| 2 | elelsuc 6426 | . . 3 ⊢ (∅ ∈ ω → ∅ ∈ suc ω) | |
| 3 | satf0sucom 35341 | . . 3 ⊢ (∅ ∈ suc ω → ((∅ Sat ∅)‘∅) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘∅)) | |
| 4 | 1, 2, 3 | mp2b 10 | . 2 ⊢ ((∅ Sat ∅)‘∅) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘∅) |
| 5 | omex 9655 | . . . 4 ⊢ ω ∈ V | |
| 6 | 5, 5 | xpex 7745 | . . . 4 ⊢ (ω × ω) ∈ V |
| 7 | xpexg 7742 | . . . . 5 ⊢ ((ω ∈ V ∧ (ω × ω) ∈ V) → (ω × (ω × ω)) ∈ V) | |
| 8 | simpl 482 | . . . . 5 ⊢ ((ω ∈ V ∧ (ω × ω) ∈ V) → ω ∈ V) | |
| 9 | goelel3xp 35316 | . . . . . . . 8 ⊢ ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑖∈𝑔𝑗) ∈ (ω × (ω × ω))) | |
| 10 | eleq1 2822 | . . . . . . . 8 ⊢ (𝑥 = (𝑖∈𝑔𝑗) → (𝑥 ∈ (ω × (ω × ω)) ↔ (𝑖∈𝑔𝑗) ∈ (ω × (ω × ω)))) | |
| 11 | 9, 10 | syl5ibrcom 247 | . . . . . . 7 ⊢ ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑥 = (𝑖∈𝑔𝑗) → 𝑥 ∈ (ω × (ω × ω)))) |
| 12 | 11 | rexlimivv 3186 | . . . . . 6 ⊢ (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗) → 𝑥 ∈ (ω × (ω × ω))) |
| 13 | 12 | ad2antll 729 | . . . . 5 ⊢ (((ω ∈ V ∧ (ω × ω) ∈ V) ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))) → 𝑥 ∈ (ω × (ω × ω))) |
| 14 | eleq1 2822 | . . . . . . 7 ⊢ (𝑦 = ∅ → (𝑦 ∈ ω ↔ ∅ ∈ ω)) | |
| 15 | 1, 14 | mpbiri 258 | . . . . . 6 ⊢ (𝑦 = ∅ → 𝑦 ∈ ω) |
| 16 | 15 | ad2antrl 728 | . . . . 5 ⊢ (((ω ∈ V ∧ (ω × ω) ∈ V) ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))) → 𝑦 ∈ ω) |
| 17 | 7, 8, 13, 16 | opabex2 8054 | . . . 4 ⊢ ((ω ∈ V ∧ (ω × ω) ∈ V) → {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} ∈ V) |
| 18 | 5, 6, 17 | mp2an 692 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} ∈ V |
| 19 | 18 | rdg0 8433 | . 2 ⊢ (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘∅) = {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} |
| 20 | 4, 19 | eqtri 2758 | 1 ⊢ ((∅ Sat ∅)‘∅) = {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 Vcvv 3459 ∪ cun 3924 ∅c0 4308 {copab 5181 ↦ cmpt 5201 × cxp 5652 suc csuc 6354 ‘cfv 6530 (class class class)co 7403 ωcom 7859 1st c1st 7984 reccrdg 8421 ∈𝑔cgoe 35301 ⊼𝑔cgna 35302 ∀𝑔cgol 35303 Sat csat 35304 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-inf2 9653 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-map 8840 df-goel 35308 df-sat 35311 |
| This theorem is referenced by: satf0op 35345 satf0n0 35346 sat1el2xp 35347 fmla0 35350 fmlafvel 35353 |
| Copyright terms: Public domain | W3C validator |