| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > satf00 | Structured version Visualization version GIF version | ||
| Description: The value of the satisfaction predicate as function over wff codes in the empty model with an empty binary relation at ∅. (Contributed by AV, 14-Sep-2023.) |
| Ref | Expression |
|---|---|
| satf00 | ⊢ ((∅ Sat ∅)‘∅) = {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano1 7868 | . . 3 ⊢ ∅ ∈ ω | |
| 2 | elelsuc 6410 | . . 3 ⊢ (∅ ∈ ω → ∅ ∈ suc ω) | |
| 3 | satf0sucom 35367 | . . 3 ⊢ (∅ ∈ suc ω → ((∅ Sat ∅)‘∅) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘∅)) | |
| 4 | 1, 2, 3 | mp2b 10 | . 2 ⊢ ((∅ Sat ∅)‘∅) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘∅) |
| 5 | omex 9603 | . . . 4 ⊢ ω ∈ V | |
| 6 | 5, 5 | xpex 7732 | . . . 4 ⊢ (ω × ω) ∈ V |
| 7 | xpexg 7729 | . . . . 5 ⊢ ((ω ∈ V ∧ (ω × ω) ∈ V) → (ω × (ω × ω)) ∈ V) | |
| 8 | simpl 482 | . . . . 5 ⊢ ((ω ∈ V ∧ (ω × ω) ∈ V) → ω ∈ V) | |
| 9 | goelel3xp 35342 | . . . . . . . 8 ⊢ ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑖∈𝑔𝑗) ∈ (ω × (ω × ω))) | |
| 10 | eleq1 2817 | . . . . . . . 8 ⊢ (𝑥 = (𝑖∈𝑔𝑗) → (𝑥 ∈ (ω × (ω × ω)) ↔ (𝑖∈𝑔𝑗) ∈ (ω × (ω × ω)))) | |
| 11 | 9, 10 | syl5ibrcom 247 | . . . . . . 7 ⊢ ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑥 = (𝑖∈𝑔𝑗) → 𝑥 ∈ (ω × (ω × ω)))) |
| 12 | 11 | rexlimivv 3180 | . . . . . 6 ⊢ (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗) → 𝑥 ∈ (ω × (ω × ω))) |
| 13 | 12 | ad2antll 729 | . . . . 5 ⊢ (((ω ∈ V ∧ (ω × ω) ∈ V) ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))) → 𝑥 ∈ (ω × (ω × ω))) |
| 14 | eleq1 2817 | . . . . . . 7 ⊢ (𝑦 = ∅ → (𝑦 ∈ ω ↔ ∅ ∈ ω)) | |
| 15 | 1, 14 | mpbiri 258 | . . . . . 6 ⊢ (𝑦 = ∅ → 𝑦 ∈ ω) |
| 16 | 15 | ad2antrl 728 | . . . . 5 ⊢ (((ω ∈ V ∧ (ω × ω) ∈ V) ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))) → 𝑦 ∈ ω) |
| 17 | 7, 8, 13, 16 | opabex2 8039 | . . . 4 ⊢ ((ω ∈ V ∧ (ω × ω) ∈ V) → {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} ∈ V) |
| 18 | 5, 6, 17 | mp2an 692 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} ∈ V |
| 19 | 18 | rdg0 8392 | . 2 ⊢ (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘∅) = {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} |
| 20 | 4, 19 | eqtri 2753 | 1 ⊢ ((∅ Sat ∅)‘∅) = {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 Vcvv 3450 ∪ cun 3915 ∅c0 4299 {copab 5172 ↦ cmpt 5191 × cxp 5639 suc csuc 6337 ‘cfv 6514 (class class class)co 7390 ωcom 7845 1st c1st 7969 reccrdg 8380 ∈𝑔cgoe 35327 ⊼𝑔cgna 35328 ∀𝑔cgol 35329 Sat csat 35330 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-map 8804 df-goel 35334 df-sat 35337 |
| This theorem is referenced by: satf0op 35371 satf0n0 35372 sat1el2xp 35373 fmla0 35376 fmlafvel 35379 |
| Copyright terms: Public domain | W3C validator |