Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > satf00 | Structured version Visualization version GIF version |
Description: The value of the satisfaction predicate as function over wff codes in the empty model with an empty binary relation at ∅. (Contributed by AV, 14-Sep-2023.) |
Ref | Expression |
---|---|
satf00 | ⊢ ((∅ Sat ∅)‘∅) = {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano1 7767 | . . 3 ⊢ ∅ ∈ ω | |
2 | elelsuc 6353 | . . 3 ⊢ (∅ ∈ ω → ∅ ∈ suc ω) | |
3 | satf0sucom 33380 | . . 3 ⊢ (∅ ∈ suc ω → ((∅ Sat ∅)‘∅) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘∅)) | |
4 | 1, 2, 3 | mp2b 10 | . 2 ⊢ ((∅ Sat ∅)‘∅) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘∅) |
5 | omex 9445 | . . . 4 ⊢ ω ∈ V | |
6 | 5, 5 | xpex 7635 | . . . 4 ⊢ (ω × ω) ∈ V |
7 | xpexg 7632 | . . . . 5 ⊢ ((ω ∈ V ∧ (ω × ω) ∈ V) → (ω × (ω × ω)) ∈ V) | |
8 | simpl 484 | . . . . 5 ⊢ ((ω ∈ V ∧ (ω × ω) ∈ V) → ω ∈ V) | |
9 | goelel3xp 33355 | . . . . . . . 8 ⊢ ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑖∈𝑔𝑗) ∈ (ω × (ω × ω))) | |
10 | eleq1 2824 | . . . . . . . 8 ⊢ (𝑥 = (𝑖∈𝑔𝑗) → (𝑥 ∈ (ω × (ω × ω)) ↔ (𝑖∈𝑔𝑗) ∈ (ω × (ω × ω)))) | |
11 | 9, 10 | syl5ibrcom 247 | . . . . . . 7 ⊢ ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑥 = (𝑖∈𝑔𝑗) → 𝑥 ∈ (ω × (ω × ω)))) |
12 | 11 | rexlimivv 3193 | . . . . . 6 ⊢ (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗) → 𝑥 ∈ (ω × (ω × ω))) |
13 | 12 | ad2antll 727 | . . . . 5 ⊢ (((ω ∈ V ∧ (ω × ω) ∈ V) ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))) → 𝑥 ∈ (ω × (ω × ω))) |
14 | eleq1 2824 | . . . . . . 7 ⊢ (𝑦 = ∅ → (𝑦 ∈ ω ↔ ∅ ∈ ω)) | |
15 | 1, 14 | mpbiri 258 | . . . . . 6 ⊢ (𝑦 = ∅ → 𝑦 ∈ ω) |
16 | 15 | ad2antrl 726 | . . . . 5 ⊢ (((ω ∈ V ∧ (ω × ω) ∈ V) ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))) → 𝑦 ∈ ω) |
17 | 7, 8, 13, 16 | opabex2 7929 | . . . 4 ⊢ ((ω ∈ V ∧ (ω × ω) ∈ V) → {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} ∈ V) |
18 | 5, 6, 17 | mp2an 690 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} ∈ V |
19 | 18 | rdg0 8283 | . 2 ⊢ (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘∅) = {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} |
20 | 4, 19 | eqtri 2764 | 1 ⊢ ((∅ Sat ∅)‘∅) = {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 ∨ wo 845 = wceq 1539 ∈ wcel 2104 ∃wrex 3071 Vcvv 3437 ∪ cun 3890 ∅c0 4262 {copab 5143 ↦ cmpt 5164 × cxp 5598 suc csuc 6283 ‘cfv 6458 (class class class)co 7307 ωcom 7744 1st c1st 7861 reccrdg 8271 ∈𝑔cgoe 33340 ⊼𝑔cgna 33341 ∀𝑔cgol 33342 Sat csat 33343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9443 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-map 8648 df-goel 33347 df-sat 33350 |
This theorem is referenced by: satf0op 33384 satf0n0 33385 sat1el2xp 33386 fmla0 33389 fmlafvel 33392 |
Copyright terms: Public domain | W3C validator |