Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satf00 Structured version   Visualization version   GIF version

Theorem satf00 33381
Description: The value of the satisfaction predicate as function over wff codes in the empty model with an empty binary relation at . (Contributed by AV, 14-Sep-2023.)
Assertion
Ref Expression
satf00 ((∅ Sat ∅)‘∅) = {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}
Distinct variable group:   𝑖,𝑗,𝑥,𝑦

Proof of Theorem satf00
Dummy variables 𝑓 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano1 7767 . . 3 ∅ ∈ ω
2 elelsuc 6353 . . 3 (∅ ∈ ω → ∅ ∈ suc ω)
3 satf0sucom 33380 . . 3 (∅ ∈ suc ω → ((∅ Sat ∅)‘∅) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘∅))
41, 2, 3mp2b 10 . 2 ((∅ Sat ∅)‘∅) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘∅)
5 omex 9445 . . . 4 ω ∈ V
65, 5xpex 7635 . . . 4 (ω × ω) ∈ V
7 xpexg 7632 . . . . 5 ((ω ∈ V ∧ (ω × ω) ∈ V) → (ω × (ω × ω)) ∈ V)
8 simpl 484 . . . . 5 ((ω ∈ V ∧ (ω × ω) ∈ V) → ω ∈ V)
9 goelel3xp 33355 . . . . . . . 8 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑖𝑔𝑗) ∈ (ω × (ω × ω)))
10 eleq1 2824 . . . . . . . 8 (𝑥 = (𝑖𝑔𝑗) → (𝑥 ∈ (ω × (ω × ω)) ↔ (𝑖𝑔𝑗) ∈ (ω × (ω × ω))))
119, 10syl5ibrcom 247 . . . . . . 7 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑥 = (𝑖𝑔𝑗) → 𝑥 ∈ (ω × (ω × ω))))
1211rexlimivv 3193 . . . . . 6 (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) → 𝑥 ∈ (ω × (ω × ω)))
1312ad2antll 727 . . . . 5 (((ω ∈ V ∧ (ω × ω) ∈ V) ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))) → 𝑥 ∈ (ω × (ω × ω)))
14 eleq1 2824 . . . . . . 7 (𝑦 = ∅ → (𝑦 ∈ ω ↔ ∅ ∈ ω))
151, 14mpbiri 258 . . . . . 6 (𝑦 = ∅ → 𝑦 ∈ ω)
1615ad2antrl 726 . . . . 5 (((ω ∈ V ∧ (ω × ω) ∈ V) ∧ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))) → 𝑦 ∈ ω)
177, 8, 13, 16opabex2 7929 . . . 4 ((ω ∈ V ∧ (ω × ω) ∈ V) → {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))} ∈ V)
185, 6, 17mp2an 690 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))} ∈ V
1918rdg0 8283 . 2 (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘∅) = {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}
204, 19eqtri 2764 1 ((∅ Sat ∅)‘∅) = {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}
Colors of variables: wff setvar class
Syntax hints:  wa 397  wo 845   = wceq 1539  wcel 2104  wrex 3071  Vcvv 3437  cun 3890  c0 4262  {copab 5143  cmpt 5164   × cxp 5598  suc csuc 6283  cfv 6458  (class class class)co 7307  ωcom 7744  1st c1st 7861  reccrdg 8271  𝑔cgoe 33340  𝑔cgna 33341  𝑔cgol 33342   Sat csat 33343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-inf2 9443
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-map 8648  df-goel 33347  df-sat 33350
This theorem is referenced by:  satf0op  33384  satf0n0  33385  sat1el2xp  33386  fmla0  33389  fmlafvel  33392
  Copyright terms: Public domain W3C validator